文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

采用层状结构提高 MWCNT-PMMA 复合材料的电磁干扰屏蔽性能。

Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures.

机构信息

Carbon Technology Unit, Division of Engineering Materials, National Physical Laboratory, Dr, K,S, Krishnan Marg, New Delhi, 110012, India.

出版信息

Nanoscale Res Lett. 2009 Jan 17;4(4):327-34. doi: 10.1007/s11671-008-9246-x.


DOI:10.1007/s11671-008-9246-x
PMID:20596500
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2893718/
Abstract

Electromagnetic interference (EMI) shielding effectiveness (SE) of multi-walled carbon nanotubes-polymethyl methacrylate (MWCNT-PMMA) composites prepared by two different techniques was measured. EMI SE up to 40 dB in the frequency range 8.2-12.4 GHz (X-band) was achieved by stacking seven layers of 0.3-mm thick MWCNT-PMMA composite films compared with 30 dB achieved by stacking two layers of 1.1-mm thick MWCNT-PMMA bulk composite. The characteristic EMI SE graphs of the composites and the mechanism of shielding have been discussed. SE in this frequency range is found to be dominated by absorption. The mechanical properties (tensile, flexural strength and modulus) of the composites were found to be comparable or better than the pure polymer. The studies therefore show that the composite can be used as structurally strong EMI shielding material.

摘要

采用两种不同技术制备的多壁碳纳米管-聚甲基丙烯酸甲酯(MWCNT-PMMA)复合材料的电磁干扰(EMI)屏蔽效能(SE)进行了测量。与堆叠两层 1.1-mm 厚 MWCNT-PMMA 块状复合材料实现的 30dB EMI SE 相比,通过堆叠 7 层 0.3-mm 厚的 MWCNT-PMMA 复合薄膜,可实现高达 40dB 的在 8.2-12.4GHz(X 波段)频率范围内的 EMI SE。讨论了复合材料的特征 EMI SE 图和屏蔽机制。在该频率范围内,SE 被发现主要由吸收主导。复合材料的机械性能(拉伸、弯曲强度和模量)被发现与纯聚合物相当或更好。因此,研究表明该复合材料可用作结构坚固的 EMI 屏蔽材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/61678bd2f71f/1556-276X-4-327-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/b0db434452c0/1556-276X-4-327-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/47711092add4/1556-276X-4-327-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/f4938232ea26/1556-276X-4-327-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/4b1d2da4531e/1556-276X-4-327-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/ddda3609d8f4/1556-276X-4-327-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/44b380ccd040/1556-276X-4-327-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/95c7d5349c15/1556-276X-4-327-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/83ee6d0b9f56/1556-276X-4-327-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/119126f39c42/1556-276X-4-327-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/407886768086/1556-276X-4-327-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/61678bd2f71f/1556-276X-4-327-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/b0db434452c0/1556-276X-4-327-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/47711092add4/1556-276X-4-327-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/f4938232ea26/1556-276X-4-327-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/4b1d2da4531e/1556-276X-4-327-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/ddda3609d8f4/1556-276X-4-327-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/44b380ccd040/1556-276X-4-327-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/95c7d5349c15/1556-276X-4-327-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/83ee6d0b9f56/1556-276X-4-327-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/119126f39c42/1556-276X-4-327-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/407886768086/1556-276X-4-327-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aece/3248038/61678bd2f71f/1556-276X-4-327-11.jpg

相似文献

[1]
Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures.

Nanoscale Res Lett. 2009-1-17

[2]
Study of electromagnetic shielding effectiveness of metal oxide polymer composite in their bulk and layered forms.

Environ Sci Pollut Res Int. 2021-1

[3]
Electromagnetic interference shielding in 1-18 GHz frequency and electrical property correlations in poly(vinylidene fluoride)-multi-walled carbon nanotube composites.

Phys Chem Chem Phys. 2015-8-21

[4]
Impact of polymer matrix on the electromagnetic interference shielding performance for single-walled carbon nanotubes-based composites.

J Nanosci Nanotechnol. 2013-2

[5]
Multilayered Composites with Carbon Nanotubes for Electromagnetic Shielding Application.

Polymers (Basel). 2023-2-20

[6]
Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Interlayered Systems Composed by Carbon Nanotube Filled Carbon Nanofiber Mats and Polymer Composites.

Nanomaterials (Basel). 2019-2-10

[7]
Electromagnetic interference shielding properties of carbon nanotube buckypaper composites.

Nanotechnology. 2009-10-14

[8]
Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Performance.

ACS Omega. 2019-1-22

[9]
Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites.

Nano Lett. 2006-6

[10]
Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances.

Nanoscale. 2014-4-7

引用本文的文献

[1]
A review on recent progress in polymer composites for effective electromagnetic interference shielding properties - structures, process, and sustainability approaches.

Nanoscale Adv. 2024-9-26

[2]
A Silver Modified Nanosheet Self-Assembled Hollow Microsphere with Enhanced Conductivity and Permeability.

Molecules. 2024-9-15

[3]
A Review of the Establishment of Effective Conductive Pathways of Conductive Polymer Composites and Advances in Electromagnetic Shielding.

Polymers (Basel). 2024-9-7

[4]
The Microwave Absorption in Composites with Finemet Alloy Particles and Carbon Nanotubes.

Materials (Basel). 2022-11-18

[5]
Polymeric Nanocomposites for Environmental and Industrial Applications.

Int J Mol Sci. 2022-1-18

[6]
Synergistic Strengthening of Mechanical Properties and Electromagnetic Interference Shielding Performance of Carbon Nanotubes (CNTs) Reinforced Magnesium Matrix Composites by CNTs Induced Laminated Structure.

Materials (Basel). 2021-12-31

[7]
Carbonaceous Materials Coated Carbon Fibre Reinforced Polymer Matrix Composites.

Polymers (Basel). 2021-8-18

[8]
Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?

ACS Omega. 2018-5-29

[9]
Fabrication of Novel Printable Electrically Conductive Adhesives (ECAs) with Excellent Conductivity and Stability Enhanced by the Addition of Polyaniline Nanoparticles.

Nanomaterials (Basel). 2019-7-1

[10]
Layer-Structured Design and Fabrication of Cyanate Ester Nanocomposites for Excellent Electromagnetic Shielding with Absorption-Dominated Characteristic.

Polymers (Basel). 2018-8-21

本文引用的文献

[1]
Materials science: nanotube composites.

Nature. 2007-6-28

[2]
Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites.

Nano Lett. 2006-6

[3]
Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding.

Nano Lett. 2005-11

[4]
A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites.

J Nanosci Nanotechnol. 2005-6

[5]
Carbon nanotubes--the route toward applications.

Science. 2002-8-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索