Suppr超能文献

谷氨酰胺残基非酶促脱酰胺机制的计算研究

Computational Studies on the Nonenzymatic Deamidation Mechanisms of Glutamine Residues.

作者信息

Kato Koichi, Nakayoshi Tomoki, Kurimoto Eiji, Oda Akifumi

机构信息

College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya, Aichi 463-8521, Japan.

Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya, Aichi 468-8503, Japan.

出版信息

ACS Omega. 2019 Feb 18;4(2):3508-3513. doi: 10.1021/acsomega.8b03199. eCollection 2019 Feb 28.

Abstract

The nonenzymatic deamidation reactions of asparagine (Asn) and glutamine (Gln) residues in proteins are associated with protein turnover and age-related diseases. The reactions are also believed to provide a molecular clock for biological processes. Although Gln deamidation is assumed to occur through the glutarimide intermediate, the mechanisms for this are unclear because under normal physiological conditions, Gln deamidation occurs relatively less frequently and at a lower rate than Asn deamidation. We investigate the mechanisms underlying glutarimide formation from Gln residues, which proceeds in two steps (cyclization and deammoniation) catalyzed by phosphate and carbonate. We also compare these reactions with noncatalytic mechanisms and water-catalyzed mechanisms. The calculations were performed on the model compound Ace-Gln-Nme (Ace = acetyl, Nme = methylamino) using the density functional theory with the B3LYP/6-31+G(d,p) level of theory. Our results suggest that all the catalysts used in our study can mediate the proton relays required for glutarimide formation. We further determined that the calculated activation barriers of the reactions catalyzed by phosphate ions (115 kJ mol) and carbonate ions (112 kJ mol) are sufficiently low for the reactions to occur under normal physiological conditions. We also show that nucleophilic enhancement of Nme nitrogen is essential for the cyclization of Gln residues.

摘要

蛋白质中天冬酰胺(Asn)和谷氨酰胺(Gln)残基的非酶促脱酰胺反应与蛋白质周转及年龄相关疾病有关。这些反应也被认为可为生物过程提供一个分子时钟。尽管谷氨酰胺脱酰胺反应被认为是通过戊二酰亚胺中间体发生的,但其机制尚不清楚,因为在正常生理条件下,谷氨酰胺脱酰胺反应发生的频率相对较低,速率也低于天冬酰胺脱酰胺反应。我们研究了由谷氨酰胺残基形成戊二酰亚胺的机制,该过程分两步进行(环化和脱氨),由磷酸盐和碳酸盐催化。我们还将这些反应与非催化机制和水催化机制进行了比较。使用密度泛函理论,在B3LYP/6-31+G(d,p)理论水平下,对模型化合物Ace-Gln-Nme(Ace = 乙酰基,Nme = 甲氨基)进行了计算。我们的结果表明,我们研究中使用的所有催化剂都可以介导形成戊二酰亚胺所需的质子传递。我们进一步确定,由磷酸根离子(115 kJ mol)和碳酸根离子(112 kJ mol)催化的反应的计算活化能垒足够低,使得这些反应能够在正常生理条件下发生。我们还表明,Nme氮的亲核增强对于谷氨酰胺残基的环化至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/baa2/6648516/90daf137bbe7/ao-2018-03199j_0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验