Suppr超能文献

基于机器学习的二硫化钨单层力学性能预测

Machine Learning Enabled Prediction of Mechanical Properties of Tungsten Disulfide Monolayer.

作者信息

Wang Xinyu, Han Dan, Hong Yang, Sun Haiyi, Zhang Jingzhi, Zhang Jingchao

机构信息

Institute of Thermal Science and Technology and School of Energy and Power Engineering, Shandong University, Jinan 250061, China.

Department of Chemistry and Holland Computing Center, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.

出版信息

ACS Omega. 2019 Jun 11;4(6):10121-10128. doi: 10.1021/acsomega.9b01087. eCollection 2019 Jun 30.

Abstract

One of two-dimensional transition metal dichalcogenide materials, tungsten disulfide (WS), has aroused much research interest, and its mechanical properties play an important role in a practical application. Here the mechanical properties of h-WS and t-WS monolayers in the armchair and zigzag directions are evaluated by utilizing the molecular dynamics (MD) simulations and machine learning (ML) technique. We mainly focus on the effects of chirality, system size, temperature, strain rate, and random vacancy defect on mechanical properties, including fracture strain, fracture strength, and Young's modulus. We find that the mechanical properties of h-WS surpass those of t-WS due to the different coordination spheres of the transition metal atoms. It can also be observed that the fracture strain, fracture strength, and Young's modulus decrease when temperature and vacancy defect ratio are enhanced. The random forest (RF) supervised ML algorithm is employed to model the correlations between different impact factors and target outputs. A total number of 3600 MD simulations are performed to generate the training and testing dataset for the ML model. The mechanical properties of WS (i.e., target outputs) can be predicted using the trained model with the knowledge of different input features, such as WS type, chirality, temperature, strain rate, and defect ratio. The mean square errors of ML predictions for the mechanical properties are orders of magnitude smaller than the actual values of each property, indicating good training results of the RF model.

摘要

二硫化钨(WS)作为二维过渡金属二硫属化物材料之一,已引起了广泛的研究兴趣,其力学性能在实际应用中起着重要作用。在此,利用分子动力学(MD)模拟和机器学习(ML)技术评估了扶手椅方向和锯齿方向上h-WS和t-WS单层的力学性能。我们主要关注手性、系统尺寸、温度、应变速率和随机空位缺陷对力学性能的影响,包括断裂应变、断裂强度和杨氏模量。我们发现,由于过渡金属原子的配位球不同,h-WS的力学性能优于t-WS。还可以观察到,当温度和空位缺陷率增加时,断裂应变、断裂强度和杨氏模量会降低。采用随机森林(RF)监督ML算法对不同影响因素与目标输出之间的相关性进行建模。总共进行了3600次MD模拟,以生成ML模型的训练和测试数据集。利用训练好的模型,结合不同的输入特征,如WS类型、手性、温度、应变速率和缺陷率,可以预测WS的力学性能(即目标输出)。ML对力学性能预测的均方误差比各性能的实际值小几个数量级,表明RF模型的训练效果良好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d16/6648085/02c9f446eb92/ao-2019-01087s_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验