Li Jia, Pollak Nina M, Macdonald Joanne
Genecology Research Centre, School of Science and Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland 4556, Australia.
CSIRO Synthetic Biology Future Science Platform, Canberra, Australian Capital Territory 2601, Australia.
ACS Omega. 2019 Jul 1;4(7):11388-11396. doi: 10.1021/acsomega.9b01097. eCollection 2019 Jul 31.
Nucleic acid analysis has become highly relevant for point-of-care (POC) diagnostics since the advent of isothermal amplification methods that do not require thermal cycling. In particular, recombinase polymerase amplification (RPA) combined with lateral flow detection offers a rapid and simple solution for field-amenable low-resource nucleic acid testing. Expanding POC nucleic acid tests for the detection of multiple analytes is vital to improve diagnostic efficiency because increased multiplexing capacity enables higher information density combined with reduced assay time and costs. Here, we investigate expanding RPA POC detection by identifying a generic multiplex RPA format that can be combined with a generic multiplex lateral flow device (LFD) to enable binary and molecular encoding for the compaction of diagnostic data. This new technology relies on the incorporation of molecular labels to differentiate nucleic acid species spatially on a lateral flow membrane. In particular, we identified additional five molecular labels that can be incorporated during the RPA reaction for subsequent coupling with LFD detection. Combined with two previously demonstrated successful labels, we demonstrate potential to enable hepta-plex detection of RPA reactions coupled to multiplex LFD detection. When this hepta-plex detection is combined with binary and molecular encoding, an intuitive 7-segment output display can be produced. We note that in all experiments, we used an identical DNA template, except for the 5' label on the forward primer, to eliminate any effects of nucleic acid sequence amplification bias. Our proof-of-concept technology demonstration is highly relevant for developing information-compact POC diagnostics where space and time are premium commodities.
自从出现了无需热循环的等温扩增方法以来,核酸分析在即时检测(POC)诊断中变得至关重要。特别是,重组酶聚合酶扩增(RPA)与侧向流动检测相结合,为适用于现场的低资源核酸检测提供了一种快速简便的解决方案。扩展用于检测多种分析物的即时检测核酸测试对于提高诊断效率至关重要,因为增加的多重检测能力能够实现更高的信息密度,同时减少检测时间和成本。在这里,我们通过确定一种通用的多重RPA形式来研究扩展RPA即时检测,该形式可以与通用的多重侧向流动装置(LFD)相结合,以实现二进制和分子编码,从而压缩诊断数据。这项新技术依赖于掺入分子标签,以便在侧向流动膜上对核酸种类进行空间区分。特别是,我们确定了另外五种分子标签,它们可以在RPA反应过程中掺入,以便随后与LFD检测偶联。结合之前证明成功的两种标签,我们展示了实现与多重LFD检测偶联的RPA反应七重检测的潜力。当这种七重检测与二进制和分子编码相结合时,可以产生直观的七段输出显示。我们注意到,在所有实验中,除了正向引物上的5'标签外,我们使用了相同的DNA模板,以消除核酸序列扩增偏差的任何影响。我们的概念验证技术演示对于开发信息紧凑的即时检测诊断非常重要,因为在这种情况下,空间和时间是宝贵的资源。