Suppr超能文献

用于高存储密度锂离子电池的MOF模板法合成CoO@TiO中空十二面体

MOF-Templated Synthesis of CoO@TiO Hollow Dodecahedrons for High-Storage-Density Lithium-Ion Batteries.

作者信息

Ding Hui, Zhang Xin-Ke, Fan Jia-Qi, Zhan Xue-Qing, Xie Lei, Shi Dean, Jiang Tao, Tsai Fang-Chang

机构信息

Hubei Key Laboratory of Polymer Materials, Key Laboratory for the Green Preparation and Application of Functional Materials (Ministry of Education), Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

出版信息

ACS Omega. 2019 Aug 2;4(8):13241-13249. doi: 10.1021/acsomega.9b01405. eCollection 2019 Aug 20.

Abstract

CoO nanostructures have been extensively studied as anode materials for rechargeable lithium-ion batteries (LIBs) because of their stability and high energy density. However, several drawbacks including low electrical transport and severe volume changes over a long period of operation have limited their utilities in LIBs. Rational composite design is becoming an attractive strategy to improve the performance and stability of potential lithium-ion-battery anode materials. Here, a simple method for synthesizing hollow CoO@TiO nanostructures using metal-organic frameworks as sacrificial templates is reported. Being used as an anode material for LIBs, the resulting composite exhibits remarkable cycling performance (1057 mAh g at 100 mA g after 100 cycles) and good rate performance. The optimized amorphous CoO@TiO hollow dodecahedron shows a significant improvement in electrochemical performance and shows a wide prospect as an advanced anode material for LIBs in the future.

摘要

由于其稳定性和高能量密度,氧化钴纳米结构作为可充电锂离子电池(LIBs)的负极材料已被广泛研究。然而,包括低电子传输和长期运行中严重的体积变化等几个缺点限制了它们在锂离子电池中的应用。合理的复合设计正成为一种有吸引力的策略,以提高潜在锂离子电池负极材料的性能和稳定性。在此,报道了一种使用金属有机框架作为牺牲模板合成中空CoO@TiO纳米结构的简单方法。作为锂离子电池的负极材料,所得复合材料表现出卓越的循环性能(100次循环后在100 mA g下为1057 mAh g)和良好的倍率性能。优化后的非晶态CoO@TiO中空十二面体在电化学性能上有显著提高,并且作为未来锂离子电池的先进负极材料展现出广阔的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验