Jin Lu, Syrovets Tatiana, Scheller Judith S, Zhang Xinlei, Simmet Thomas
Institute of Pharmacology of Natural Products & Clinical Pharmacology, Ulm University, Helmholtzstr. 20, 89081 Ulm, Germany.
Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
ACS Omega. 2019 Aug 6;4(8):13388-13399. doi: 10.1021/acsomega.9b01590. eCollection 2019 Aug 20.
Persistently high plasma levels of serum amyloid A (SAA) may induce AA amyloidosis in various organs causing their dysfunction. Although SAA isoforms share a high degree of homology, only the SAA1.1 isoform is found in amyloid deposits. SAA1.1 misfolding is a nucleation-dependent process with dimer and trimer formation playing a major role in SAA fibril formation through self-catalyzed recruitment of native SAA molecules. Yet, a structural model of initial SAA oligomerization is still missing. In this study, we constructed a loosely associated model for murine SAA1.1 and SAA2.2 dimers in the presence or absence of hyaluronic acid as an exemplary glycosaminoglycan, a factor known to facilitate SAA fibril formation. Molecular dynamics simulations predicted that hyaluronic acid finally stabilized in a different binding pocket of the pathogenic SAA1.1 dimer compared to the nonpathogenic SAA2.2 dimer. Besides, Markov state modeling points to dynamic behavioral differences between the linker region of SAA1.1 and SAA2.2 and identifies a state unique to pathogenic SAA1.1 while bound to hyaluronic acid. The presence or absence of hyaluronic acid, as well as the dimer interface switch, affects dynamic behavior and possible oligomeric states, proposing a conceivable clue to the deviant pathogenicity of the two SAA isoforms.
血清淀粉样蛋白A(SAA)持续高水平的血浆浓度可能会在各种器官中诱发AA淀粉样变性,导致器官功能障碍。尽管SAA亚型具有高度同源性,但在淀粉样沉积物中仅发现了SAA1.1亚型。SAA1.1的错误折叠是一个成核依赖的过程,二聚体和三聚体的形成在SAA纤维形成中起主要作用,通过自催化募集天然SAA分子。然而,初始SAA寡聚化的结构模型仍然缺失。在本研究中,我们构建了一个在存在或不存在透明质酸(作为示例性糖胺聚糖,一种已知促进SAA纤维形成的因子)的情况下,小鼠SAA1.1和SAA2.2二聚体的松散关联模型。分子动力学模拟预测,与非致病性SAA2.2二聚体相比,透明质酸最终稳定在致病性SAA1.1二聚体的不同结合口袋中。此外,马尔可夫状态建模指出了SAA1.1和SAA2.2连接区之间的动态行为差异,并确定了致病性SAA1.1与透明质酸结合时特有的一种状态。透明质酸的存在与否以及二聚体界面转换会影响动态行为和可能的寡聚状态,为两种SAA亚型的异常致病性提供了一个可想象的线索。