Suppr超能文献

基于可穿戴传感器的防碰撞检测算法,用于识别绊倒事件。

Pre-Impact Detection Algorithm to Identify Tripping Events Using Wearable Sensors.

机构信息

The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.

Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland.

出版信息

Sensors (Basel). 2019 Aug 27;19(17):3713. doi: 10.3390/s19173713.

Abstract

This study aimed to investigate the performance of an updated version of our pre-impact detection algorithm parsing out the output of a set of Inertial Measurement Units (IMUs) placed on lower limbs and designed to recognize signs of lack of balance due to tripping. Eight young subjects were asked to manage tripping events while walking on a treadmill. An adaptive threshold-based algorithm, relying on a pool of adaptive oscillators, was tuned to identify abrupt kinematics modifications during tripping. Inputs of the algorithm were the elevation angles of lower limb segments, as estimated by IMUs located on thighs, shanks and feet. The results showed that the proposed algorithm can identify a lack of balance in about 0.37 ± 0.11 s after the onset of the perturbation, with a low percentage of false alarms (<10%), by using only data related to the perturbed shank. The proposed algorithm can hence be considered a multi-purpose tool to identify different perturbations (i.e., slippage and tripping). In this respect, it can be implemented for different wearable applications (e.g., smart garments or wearable robots) and adopted during daily life activities to enable on-demand injury prevention systems prior to fall impacts.

摘要

本研究旨在探究我们的预撞击检测算法的更新版本的性能,该算法从一组放置在下肢的惯性测量单元(IMU)的输出中提取信息,旨在识别因绊倒而导致的平衡缺失迹象。 八位年轻受试者被要求在跑步机上行走时管理绊倒事件。 一种基于自适应阈值的算法,依赖于一组自适应振荡器,经过调谐以识别绊倒过程中的突然运动学变化。 算法的输入是通过位于大腿、小腿和脚上的 IMU 估计的下肢节段的仰角。 结果表明,该算法可以在受到干扰后约 0.37 ± 0.11 s 内识别出平衡缺失,且假警报率(<10%)较低,仅使用与受干扰的小腿相关的数据即可实现。 因此,该算法可以被认为是一种多用途工具,可以识别不同的干扰(即滑倒和绊倒)。 在这方面,它可以应用于不同的可穿戴应用(例如智能服装或可穿戴机器人),并在日常生活活动中采用,以便在跌倒冲击之前按需实现损伤预防系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07df/6749342/9bd16f4a09b2/sensors-19-03713-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验