文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过帕博西尼调节 lncRNA SNHG15/CDK6/miR-627 通路,克服胶质母细胞瘤中替莫唑胺耐药并减少与胶质瘤相关的小胶质细胞 M2 极化。

Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme.

机构信息

Department of Neurosurgery, Harbin Medical University Cancer Hospital, No.150 Haping Road, Nangang District, Harbin, Heilongjiang, 150001, People's Republic of China.

出版信息

J Exp Clin Cancer Res. 2019 Aug 28;38(1):380. doi: 10.1186/s13046-019-1371-0.


DOI:10.1186/s13046-019-1371-0
PMID:31462285
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6714301/
Abstract

BACKGROUND: Accumulating evidence demonstrates the oncogenic roles of lncRNA (long non-coding RNA) molecules in a wide variety of cancer types including glioma. Equally important, However, tumorigenic functions of lncRNA in glioma remain largely unclear. A recent study suggested lncRNA SNHG15 played a role for regulating angiogenesis in glioma but its role in the tumor microenvironment (TME) was not investigated. METHODS: First, we showed that SNHG15 was upregulated in GBM cells and associated with a poor prognosis for the patients of GBM using public databases. Next, we collected temozolomide sensitive (TMZ-S) and resistant (TMZ-R) clinical samples and demonstrated that co-culturing TMZ-R cells with HMC3 (microglial) cells promoted M2-polarization of HMC3 and the secretion of pro-GBM cytokines TGF-β and IL-6. RESULTS: Comparative qPCR analysis of TMZ-S and TMZ-R cells showed that a significantly higher level of SNHG15, coincidental with a higher level of Sox2, β-catenin, EGFR, and CDK6 in TMZ-R cells. Subsequently, using bioinformatics tool, a potential mechanistic route for SNHG15 to promote GBM tumorigenesis was by inhibiting tumor suppressor, miR-627-5p which leads to activation of CDK6. Gene-silencing technique was employed to demonstrate that suppression of SNHG15 indeed led to the suppression of GBM tumorigenesis, accompanied by an increase miR-627-5p and decreased its two oncogenic targets, CDK6 and SOX-2. In addition, SNHG15-silenced TMZ-R cells became significantly sensitive towards TMZ treatment and less capable of promoting M2-phenotype in the HMC3 microglial cells. We then evaluated the potential anti-GBM activity of CDK6 inhibitor, palbociclib, using TMZ-R PDX mouse models. Palbociclib treatment significantly reduced tumorigenesis in TMZ-R/HMC3 bearing mice and SNHG15 and CDK6 expression was significantly reduced while miR-627-5p level was increased. Additionally, palbociclib treatment appeared to overcome TMZ resistance as well as reduced M2 markers in HMC3 cells. CONCLUSION: Together, we provided evidence supporting the usage of CDK6 inhibitor for TMZ-resistant GBM cases. Further investigation is warranted for the consideration of clinical trials.

摘要

背景:越来越多的证据表明,长链非编码 RNA(lncRNA)分子在包括神经胶质瘤在内的多种癌症类型中具有致癌作用。同样重要的是,lncRNA 在神经胶质瘤中的致瘤功能仍很大程度上不清楚。最近的一项研究表明,lncRNA SNHG15 可以调节神经胶质瘤中的血管生成,但它在肿瘤微环境(TME)中的作用尚未被研究。

方法:首先,我们使用公共数据库显示 SNHG15 在 GBM 细胞中上调,并与 GBM 患者的不良预后相关。接下来,我们收集了替莫唑胺敏感(TMZ-S)和耐药(TMZ-R)临床样本,并证明 TMZ-R 细胞与 HMC3(小胶质细胞)共培养可促进 HMC3 的 M2 极化和促 GBM 细胞因子 TGF-β和 IL-6 的分泌。

结果:TMZ-S 和 TMZ-R 细胞的比较 qPCR 分析显示,SNHG15 水平显著升高,同时 TMZ-R 细胞中 Sox2、β-catenin、EGFR 和 CDK6 水平也升高。随后,通过生物信息学工具,发现 SNHG15 促进神经胶质瘤发生的潜在机制途径是抑制肿瘤抑制因子 miR-627-5p,从而激活 CDK6。基因沉默技术用于证明抑制 SNHG15 确实会抑制神经胶质瘤的发生,同时增加 miR-627-5p 并降低其两个致癌靶标 CDK6 和 SOX-2。此外,沉默 SNHG15 的 TMZ-R 细胞对 TMZ 治疗变得更加敏感,并且在 HMC3 小胶质细胞中促进 M2 表型的能力降低。然后,我们使用 TMZ-R PDX 小鼠模型评估 CDK6 抑制剂 palbociclib 的潜在抗 GBM 活性。Palbociclib 治疗显著降低了携带 TMZ-R/HMC3 的小鼠的肿瘤发生,同时 SNHG15 和 CDK6 的表达明显降低,而 miR-627-5p 的水平升高。此外,Palbociclib 治疗似乎克服了 TMZ 耐药性,并降低了 HMC3 细胞中的 M2 标志物。

结论:综上所述,我们提供了支持使用 CDK6 抑制剂治疗 TMZ 耐药性 GBM 病例的证据。需要进一步研究以考虑临床试验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/139808fb8fe4/13046_2019_1371_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/0106a434fee6/13046_2019_1371_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/74a956a2d3ea/13046_2019_1371_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/a120bc49d9c6/13046_2019_1371_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/0c572d8ce383/13046_2019_1371_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/d8e7944b6e43/13046_2019_1371_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/271ba5d1478e/13046_2019_1371_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/f956c40a2b6a/13046_2019_1371_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/139808fb8fe4/13046_2019_1371_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/0106a434fee6/13046_2019_1371_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/74a956a2d3ea/13046_2019_1371_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/a120bc49d9c6/13046_2019_1371_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/0c572d8ce383/13046_2019_1371_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/d8e7944b6e43/13046_2019_1371_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/271ba5d1478e/13046_2019_1371_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/f956c40a2b6a/13046_2019_1371_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777d/6714301/139808fb8fe4/13046_2019_1371_Fig8_HTML.jpg

相似文献

[1]
Modulating lncRNA SNHG15/CDK6/miR-627 circuit by palbociclib, overcomes temozolomide resistance and reduces M2-polarization of glioma associated microglia in glioblastoma multiforme.

J Exp Clin Cancer Res. 2019-8-28

[2]
LINC00511 facilitates Temozolomide resistance of glioblastoma cells via sponging miR-126-5p and activating Wnt/β-catenin signaling.

J Biochem Mol Toxicol. 2021-9

[3]
miR-126-3p sensitizes glioblastoma cells to temozolomide by inactivating Wnt/β-catenin signaling via targeting SOX2.

Life Sci. 2019-4-10

[4]
MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression.

Oncotarget. 2017-4-4

[5]
Lnc-TALC promotes O-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p.

Nat Commun. 2019-5-3

[6]
DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma.

Mol Cancer. 2020-2-10

[7]
Brain Exposure of Two Selective Dual CDK4 and CDK6 Inhibitors and the Antitumor Activity of CDK4 and CDK6 Inhibition in Combination with Temozolomide in an Intracranial Glioblastoma Xenograft.

Drug Metab Dispos. 2015-9

[8]
Cordycepin Augments the Chemosensitivity of Human Glioma Cells to Temozolomide by Activating AMPK and Inhibiting the AKT Signaling Pathway.

Mol Pharm. 2018-10-17

[9]
Exosomal transfer of long non-coding RNA SBF2-AS1 enhances chemoresistance to temozolomide in glioblastoma.

J Exp Clin Cancer Res. 2019-4-16

[10]
Nuclear factor I A promotes temozolomide resistance in glioblastoma via activation of nuclear factor κB pathway.

Life Sci. 2019-10-12

引用本文的文献

[1]
Hsa_circ_0059511 promote glioma cell proliferation and migration through hsa-miR-194-5p/HBEGF axis.

Cancer Cell Int. 2025-6-20

[2]
TRAF7 knockdown induces cellular senescence and synergizes with lomustine to inhibit glioma progression and recurrence.

J Exp Clin Cancer Res. 2025-4-4

[3]
Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide.

Mol Neurobiol. 2025-2

[4]
MicroRNAs as the pivotal regulators of Temozolomide resistance in glioblastoma.

Mol Brain. 2024-7-2

[5]
GINS2 regulates temozolomide chemosensitivity via the EGR1/ECT2 axis in gliomas.

Cell Death Dis. 2024-3-11

[6]
Signaling Pathways of AXL Receptor Tyrosine Kinase Contribute to the Pathogenetic Mechanisms of Glioblastoma.

Cells. 2024-2-19

[7]
Drug resistance in glioblastoma: from chemo- to immunotherapy.

Cancer Drug Resist. 2023-10-11

[8]
Engineered smart materials for RNA based molecular therapy to treat Glioblastoma.

Bioact Mater. 2023-11-27

[9]
Exosomal non-coding RNAs in glioma progression: insights into tumor microenvironment dynamics and therapeutic implications.

Front Cell Dev Biol. 2023-11-1

[10]
SNHG15 promotes gallbladder cancer progression by enhancing the autophagy of tumor cell under nutrition stress.

Cell Cycle. 2023-10

本文引用的文献

[1]
Long non-coding RNA SNHG15 accelerates the progression of non-small cell lung cancer by absorbing miR-211-3p.

Eur Rev Med Pharmacol Sci. 2019-2

[2]
PAX3 Promotes Proliferation of Human Glioma Cells by WNT/β-Catenin Signaling Pathways.

J Mol Neurosci. 2019-3-2

[3]
LncRNA SNHG15 promotes proliferation and migration of lung cancer via targeting microRNA-211-3p.

Eur Rev Med Pharmacol Sci. 2018-10

[4]
Aberrant expression of long noncoding RNA SNHG15 correlates with liver metastasis and poor survival in colorectal cancer.

J Cell Physiol. 2018-10-14

[5]
The REMBRANDT study, a large collection of genomic data from brain cancer patients.

Sci Data. 2018-8-14

[6]
Inhibition of Wnt/beta-catenin signaling downregulates expression of aldehyde dehydrogenase isoform 3A1 (ALDH3A1) to reduce resistance against temozolomide in glioblastoma .

Oncotarget. 2018-4-27

[7]
Knockdown of SNHG15 suppresses renal cell carcinoma proliferation and EMT by regulating the NF-κB signaling pathway.

Int J Oncol. 2018-5-4

[8]
Long non-coding RNA SNHG15 promotes CDK14 expression via miR-486 to accelerate non-small cell lung cancer cells progression and metastasis.

J Cell Physiol. 2018-4-6

[9]
A highly potent CDK4/6 inhibitor was rationally designed to overcome blood brain barrier in gliobastoma therapy.

Eur J Med Chem. 2018-1-20

[10]
Long noncoding RNA SNHG15 promotes human breast cancer proliferation, migration and invasion by sponging miR-211-3p.

Biochem Biophys Res Commun. 2018-1-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索