Suppr超能文献

立体定向肝脏放射治疗中移动肿瘤的模拟实时剂量重建。

Simulated real-time dose reconstruction for moving tumors in stereotactic liver radiotherapy.

机构信息

Department of Oncology, Aarhus University Hospital, Aarhus N, 8200, Denmark.

Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark.

出版信息

Med Phys. 2019 Nov;46(11):4738-4748. doi: 10.1002/mp.13792. Epub 2019 Sep 20.

Abstract

PURPOSE

In radiotherapy, tumor motion may deteriorate the planned dose distribution. However, the dosimetric consequences of the motion are normally unknown for individual treatments. We here present a method for real-time motion-including tumor dose reconstruction and demonstrate its use for simulated stereotactic body radiotherapy (SBRT) of patients with liver cancer previously treated with Calypso-guided gating.

METHODS

Real-time motion-including dose reconstruction was performed using in-house developed software, DoseTracker, on offline replays of previous clinical treatments. The patient cohort consisted of fifteen patients previously treated in our clinic with three-fraction SBRT to the liver using conformal or IMRT plans. The tumor motion at treatment was monitored with implanted electromagnetic transponders. The dose reconstruction was performed for both the actual gated treatments and simulated nongated treatments using a 21 Hz data stream containing accelerator parameters and the recorded motion. The dose was reconstructed in the same calculation points within the planning target volume (PTV) as used by the treatment planning system (TPS). The reconstructed doses were compared with calculations performed in the TPS, in which the motion was modeled as a series of isocenter shifts. The comparison included point doses as a function of treatment time and the dose volume histogram (DVH) for the clinical target volume (CTV). The motion-induced reduction in the dose to 95% of the CTV, , and in the mean CTV dose, ΔD , was compared between DoseTracker and the TPS for each simulated fraction. DoseTracker currently assumes water density within the patient contour, so for comparison, the TPS calculations were performed with both CT density and water density. The calculation times were additionally analyzed.

RESULTS

Dose reconstruction was carried out for ninety SBRT sessions with calculation volumes ranging from 9.9 to 366.4 cm and median calculation times of 55-155 ms (equivalent to 18.2-6.5 Hz). Time-resolved trends of doses to a single calculation point in the patient were well replicated and dose differences between actual and planned calculations matched well. ΔD had a range of -0.1%-30.7%-points and was estimated by DoseTracker with a root-mean-square deviation (RMSD) to the TPS calculations of 0.43%-points (water density) and 0.79%-points (CT density). Similarly, had a range of 0.0%-35.2%-points and was estimated by DoseTracker with an RMSD of 0.80%-points (water density) and 1.33%-points (CT density). DoseTracker predicted losses in tumor dose coverage above 5%-points with high sensitivity (91.7%) and specificity (97.6%).

CONCLUSIONS

Real-time dose reconstruction to moving tumors was demonstrated on offline replays of previous clinical treatments. DVHs of actually delivered dose are made available immediately after the end of treatment fractions. It shows promising results for liver SBRT with accurate estimation of CTV dose deteriorations caused by motion during treatment.

摘要

目的

在放射治疗中,肿瘤运动会使计划的剂量分布恶化。然而,对于个体治疗,运动的剂量学后果通常是未知的。我们在此介绍一种用于实时包含运动的肿瘤剂量重建的方法,并展示其在以前接受过 Calypso 引导门控的肝癌患者的模拟立体定向体放射治疗(SBRT)中的应用。

方法

使用内部开发的软件 DoseTracker 在以前的临床治疗的离线重放中进行实时包含运动的剂量重建。患者队列由 15 名以前在我们诊所接受过三次分割 SBRT 治疗的肝癌患者组成,使用适形或调强放疗计划。在治疗时使用植入的电磁传感器监测肿瘤运动。使用包含加速器参数和记录运动的 21 Hz 数据流,对实际门控治疗和模拟非门控治疗进行剂量重建。剂量是在与治疗计划系统 (TPS) 相同的计划靶区 (PTV) 内的计算点进行重建的。重建剂量与 TPS 中进行的剂量计算进行了比较,其中运动被建模为一系列等中心移位。比较包括治疗时间的点剂量和临床靶区 (CTV) 的剂量体积直方图 (DVH)。对于每个模拟分次,将 DoseTracker 和 TPS 之间的 CTV 中 95%、 和平均 CTV 剂量 降低 进行了比较。 DoseTracker 目前假设患者轮廓内的水密度,因此为了进行比较,TPS 计算分别使用 CT 密度和水密度进行。此外,还分析了计算时间。

结果

对 90 次 SBRT 治疗进行了剂量重建,计算体积范围为 9.9 至 366.4 cm,中位数计算时间为 55-155 ms(等效于 18.2-6.5 Hz)。患者中单个计算点的时间分辨趋势得到了很好的复制,实际和计划计算之间的剂量差异也很好地匹配。 的范围为 0.1%至 30.7%,由 DoseTracker 估计,与 TPS 计算的均方根偏差 (RMSD) 为 0.43%(水密度)和 0.79%(CT 密度)。同样, 的范围为 0.0%至 35.2%,由 DoseTracker 估计,RMSD 为 0.80%(水密度)和 1.33%(CT 密度)。DoseTracker 以高灵敏度(91.7%)和特异性(97.6%)预测了肿瘤覆盖剂量超过 5%的损失。

结论

在以前的临床治疗的离线重放中证明了实时包含运动的肿瘤剂量重建。在治疗结束后立即提供实际给予的剂量的 DVH。对于肝脏 SBRT,它对治疗期间运动引起的 CTV 剂量恶化具有准确的估计,显示出有希望的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验