State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
J Colloid Interface Sci. 2019 Nov 15;556:376-385. doi: 10.1016/j.jcis.2019.08.033. Epub 2019 Aug 9.
Strong demand for affordable clean energy to support applications ranging from conventional energy supply to space propulsion places spotlight on advanced energy generation using photovoltaic and wind power. Yet, the intermittent nature of solar and wind sources drives the search for energy storage solutions that would permit the needed level of resilience and support further growth in the use of renewable sources of power. Hydrogen generation using sunlight is a promising pathway to decouple demand from supply. Herein, we show how exposure to reactive Ar-H, Ar-H-N, and Ar-O plasma environments can notably enhance surface properties of photocatalytic TiO nanosheets used in advanced energy generation systems. Treatment using Ar-H plasmas produced highly hydrogenated, surface-disordered TiO nanosheets with oxygen vacancies, whereas exposure to Ar-H-N plasmas resulted in N doping. Surprisingly, Ar-O plasma treatment did not change surface properties of TiO. Optical emission spectroscopy was used to monitor transient species to further understand surface modification in plasma. Direct measurements demonstrated that among thus-produced samples, hydrogenated TiO nanosheets exhibit the highest photocatalytic H-generation activity under visible-light irradiation, which is also greater than the activity of pure, untreated nanosheets. The mechanism of enhancing the visible-light photocatalytic H-generation activity on hydrogenated TiO nanosheets is also proposed. The level of surface disorder and oxygen vacancies plays an important role in enhancing visible-light absorption and reducing the recombination of photogenerated electrons and holes.
对经济实惠的清洁能源的强烈需求,支撑着从传统能源供应到太空推进等各种应用,这使得人们对利用光伏和风力发电进行先进能源产生的兴趣日益浓厚。然而,太阳能和风力资源的间歇性特点,促使人们寻求储能解决方案,以实现所需的弹性水平,并支持可再生能源的进一步增长。利用阳光产生氢气是一种有前途的途径,可以实现供需解耦。在这里,我们展示了如何利用反应性 Ar-H、Ar-H-N 和 Ar-O 等离子体环境,显著增强用于先进能源系统的光催化 TiO 纳米片的表面特性。使用 Ar-H 等离子体处理会产生高度氢化、表面无序的 TiO 纳米片,同时伴有氧空位,而暴露于 Ar-H-N 等离子体中则会导致 N 掺杂。令人惊讶的是,Ar-O 等离子体处理不会改变 TiO 的表面特性。利用光发射光谱监测瞬态物种,以进一步了解等离子体中的表面改性。直接测量表明,在所产生的样品中,氢化 TiO 纳米片在可见光照射下表现出最高的光催化 H 生成活性,甚至高于纯未处理纳米片的活性。还提出了在氢化 TiO 纳米片上增强可见光光催化 H 生成活性的机制。表面无序程度和氧空位的水平对增强可见光吸收和减少光生电子和空穴的复合起着重要作用。