Ovando G, Peña J J, Morales J, López-Bonilla J
CBI - Area de Física Atómica Molecular Aplicada, Universidad Autónoma Metropolitana - Azcapotzalco, Av. San Pablo 180, CP 02200, CDMX, Mexico.
ESIME-Zacatenco, Instituto Politécnico Nacional, Edificio 4, UP Adolfo López Mateos, Col. Lindavista, CP 07738, CDMX, Mexico.
J Mol Model. 2019 Aug 31;25(9):289. doi: 10.1007/s00894-019-4159-4.
In quantum chemical calculations, there are two facts of particular relevance: the position-dependent mass Schrödinger equation (PDMSE) and the exponential-type potentials used in the theoretical study of vibrational properties for diatomic molecules. Accordingly, in this work, the treatment of exactly solvable PDMSE for exponential-type potentials is presented. The proposal is based on the exactly solvable constant mass Schrödinger equation (CMSE) for a class of multiparameter exponential-type potentials, adapted to the position-dependent-mass (PDM) kinetic energy operator in the O von Roos formulation. As a useful application, we consider a PDM distribution of the form [Formula: see text], where the different parameters can be adjusted depending on the potential under study. The principal advantage of the method is that solution of different specific PDM exponential potential models are obtained as particular cases from the proposal by means of a simple choice of the involved exponential parameters. This means that is not necessary resort to specialized methods for solving second-order differential equations as usually done for each specific potential. Also, the usefulness of our results is shown with the calculation of s-waves scattering cross-section for the Hulthén potential although this kind of study can be extended to other specific potential models such as PDM deformed potentials.
在量子化学计算中,有两个特别相关的事实:位置依赖质量的薛定谔方程(PDMSE)以及用于双原子分子振动性质理论研究的指数型势。因此,在这项工作中,给出了针对指数型势的精确可解PDMSE的处理方法。该提议基于一类多参数指数型势的精确可解常质量薛定谔方程(CMSE),并适配到O von Roos形式下的位置依赖质量(PDM)动能算符。作为一个有用的应用,我们考虑形式为[公式:见原文]的PDM分布,其中不同参数可根据所研究的势进行调整。该方法的主要优点在于,通过对所涉及的指数参数进行简单选择,从该提议中可得到不同特定PDM指数势模型的解作为特殊情况。这意味着无需像通常针对每个特定势那样借助专门的方法来求解二阶微分方程。此外,通过计算胡尔特恩势的s波散射截面展示了我们结果的实用性,尽管这类研究可扩展到其他特定势模型,如PDM变形势。