Suppr超能文献

PT -Symmetric Potentials from the Confluent Heun Equation.

作者信息

Lévai Géza

机构信息

Institute for Nuclear Research (Atomki), P. O. Box 51, H-4001 Debrecen, Hungary.

出版信息

Entropy (Basel). 2021 Jan 3;23(1):68. doi: 10.3390/e23010068.

Abstract

We derive exactly solvable potentials from the formal solutions of the confluent Heun equation and determine conditions under which the potentials possess PT symmetry. We point out that for the implementation of PT symmetry, the symmetrical canonical form of the Heun equation is more suitable than its non-symmetrical canonical form. The potentials identified in this construction depend on twelve parameters, of which three contribute to scaling and shifting the energy and the coordinate. Five parameters control the z(x) function that detemines the variable transformation taking the Heun equation into the one-dimensional Schrödinger equation, while four parameters play the role of the coupling coefficients of four independently tunable potential terms. The potentials obtained this way contain Natanzon-class potentials as special cases. Comparison with the results of an earlier study based on potentials obtained from the non-symmetrical canonical form of the confluent Heun equation is also presented. While the explicit general solutions of the confluent Heun equation are not available, the results are instructive in identifying which potentials can be obtained from this equation and under which conditions they exhibit PT symmetry, either unbroken or broken.

摘要

相似文献

1
PT -Symmetric Potentials from the Confluent Heun Equation.
Entropy (Basel). 2021 Jan 3;23(1):68. doi: 10.3390/e23010068.
3
A quadratic transformation for a special confluent Heun function.
Heliyon. 2024 Aug 20;10(16):e36535. doi: 10.1016/j.heliyon.2024.e36535. eCollection 2024 Aug 30.
4
Wide localized solutions of the parity-time-symmetric nonautonomous nonlinear Schrödinger equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jan;91(1):013205. doi: 10.1103/PhysRevE.91.013205. Epub 2015 Jan 20.
5
Stable parity-time-symmetric nonlinear modes and excitations in a derivative nonlinear Schrödinger equation.
Phys Rev E. 2017 Jan;95(1-1):012205. doi: 10.1103/PhysRevE.95.012205. Epub 2017 Jan 13.
6
Position-dependent mass Schrödinger equation for exponential-type potentials.
J Mol Model. 2019 Aug 31;25(9):289. doi: 10.1007/s00894-019-4159-4.
8
Non-deformed singular and non-singular exponential-type potentials.
J Mol Model. 2017 Aug 18;23(9):265. doi: 10.1007/s00894-017-3423-8.
9
Complex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
Philos Trans A Math Phys Eng Sci. 2013 Mar 18;371(1989):20120059. doi: 10.1098/rsta.2012.0059. Print 2013 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验