Department of Chemistry, Bucknell University, Lewisburg, PA, USA.
Department of Chemistry, Bucknell University, Lewisburg, PA, USA.
Arch Biochem Biophys. 2019 Oct 15;674:108082. doi: 10.1016/j.abb.2019.108082. Epub 2019 Aug 29.
Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA96 (1999) 4192-4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.
植物脂氧合酶将亚油酸氧合生成 13(S)-过氧-9Z,11E-十八碳二烯酸(13(S)-HPOD)或 9-过氧-10E,12Z-十八碳二烯酸(9(S)-HPOD)。这些酶结合底物的方式以及它们控制区域特异性的机制尚不确定。Hornung 等人(Proc. Natl. Acad. Sci. USA96 (1999) 4192-4197)已经确定了一个重要的残基,对应于大豆脂氧合酶-1(SBLO-1)中的phe-557。这些作者提出,该位置的大残基有利于带有羧酸盐基团的亚油酸与酶表面附近的羧酸盐基团结合(尾巴首先结合),从而形成 13(S)-HPOD。他们还提出,该位置的较小残基有利于亚油酸以头部首先与带羧酸盐基团的方式结合,其羧酸盐基团与保守的精氨酸残基(SBLO-1 中的 arg-707)相互作用,这导致 9(S)-HPOD。在本工作中,我们已经在 SBLO-1 上测试了这些建议。在 pH 7.5 下,F557V 突变体从亚油酸中产生 33%的 9-HPOD(S:R = 87:13),而野生型酶产生 8%,F557V,R707L 双突变体产生 12%。用 11(S)-氘代亚油酸进行的实验表明,F557V 突变体产生的 9(S)-HPOD 涉及从亚油酸的 C-11 的反式位置去除氢,这与如果 9(S)-HPOD 是由于与导致 13(S)-HPOD 的方向相反的方向结合而产生的情况一致。由 F557V 突变体氧合 10Z,13Z-十九碳二烯酸和花生四烯酸得到的产物分布支持ω6 氧合作用来自尾巴首先结合,ω10 氧合作用来自头部首先结合的假说。结果表明,通过促进替代底物结合模式的突变可以改变 SBLO-1 的区域特异性,并增加 13(S)-HPOD 来自尾巴首先结合的证据。