Suppr超能文献

计算定量磁共振图像特征 - 鉴别胶质母细胞瘤与单发脑转移瘤的潜在有用工具。

Computational quantitative MR image features - a potential useful tool in differentiating glioblastoma from solitary brain metastasis.

机构信息

Clinical Centre of Serbia, Centre for Radiology and Magnetic Resonance, Pasterova 2, Belgrade 11000, Serbia.

Department of Biophysics, School of Medicine, University of Belgrade, Višegradska 26/2, Belgrade 11000, Serbia.

出版信息

Eur J Radiol. 2019 Oct;119:108634. doi: 10.1016/j.ejrad.2019.08.003. Epub 2019 Aug 9.

Abstract

PURPOSE

Glioblastomas (GBM) and metastases are the most frequent malignant brain tumors in the adult population. Their presentation on conventional MRI is quite similar, but treatment strategy and prognosis are substantially different. Even with advanced MR techniques, in some cases diagnostic uncertainty remains. The main objective of this study was to determine whether fractal, texture, or both MR image analyses could aid in differentiating glioblastoma from solitary brain metastasis.

METHOD

In a retrospective study of 55 patients (30 glioblastomas and 25 solitary metastases) who underwent T2W/SWI/CET1 MRI, quantitative parameters of fractal and texture analysis were estimated, using box-counting and gray level co-occurrence matrix (GLCM) methods.

RESULTS

All five GLCM parameters obtained from T2W images showed significant difference between glioblastomas and solitary metastases, as well as on CET1 images except correlation (S), contrary to SWI images which showed different values of two parameters (angular second moment-S and contrast-S). Only three fractal features (binary box dimension-D, normalized box dimension-D and lacunarity-λ) measured on T2W and D measured on CET1 images significantly differed GBMs from solitary metastases. The highest sensitivity and specificity were obtained from inverse difference moment (S) on T2W and S on CET1 images, respectively. Combination of several GLCM parameters yielded better results. The processing of T2W images provided the most significantly different parameters between the groups, followed by CET1 and SWI images.

CONCLUSIONS

Computational-aided quantitative image analysis may potentially improve diagnostic accuracy. According to our results texture features are more significant than fractal-based features in differentiation glioblastoma from solitary metastasis.

摘要

目的

胶质母细胞瘤(GBM)和转移瘤是成人中最常见的恶性脑肿瘤。它们在常规 MRI 上的表现非常相似,但治疗策略和预后却有很大的不同。即使采用先进的磁共振技术,在某些情况下仍存在诊断不确定性。本研究的主要目的是确定分形、纹理或两者的磁共振图像分析是否有助于区分胶质母细胞瘤和单发脑转移瘤。

方法

回顾性分析了 55 例患者(30 例胶质母细胞瘤和 25 例单发转移瘤)的 T2W/SWI/CET1 MRI 资料,采用盒计数和灰度共生矩阵(GLCM)方法对分形和纹理分析的定量参数进行了评估。

结果

T2W 图像上的所有 5 个 GLCM 参数均显示出胶质母细胞瘤和单发转移瘤之间的显著差异,CET1 图像上的除相关性(S)外,SWI 图像上的两个参数(角二阶矩-S 和对比度-S)也显示出不同的数值。仅在 T2W 上测量的三个分形特征(二进制盒维数-D、归一化盒维数-D 和空穴度-λ)和 CET1 上测量的 D 与单发转移瘤有显著差异。在 T2W 上的逆差矩(S)和 CET1 上的 S 获得了最高的灵敏度和特异性。多个 GLCM 参数的组合产生了更好的结果。T2W 图像的处理提供了组间最显著不同的参数,其次是 CET1 和 SWI 图像。

结论

计算辅助的定量图像分析可能会提高诊断准确性。根据我们的结果,在区分胶质母细胞瘤和单发转移瘤方面,纹理特征比基于分形的特征更为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验