School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China.
School of Aerospace Science and Technology, Xidian University, Xi'an 710071, PR China.
Neural Netw. 2019 Nov;119:261-272. doi: 10.1016/j.neunet.2019.08.013. Epub 2019 Aug 17.
In this paper, we propose a distributed semi-supervised learning (DSSL) algorithm based on the extreme learning machine (ELM) algorithm over communication network using the event-triggered (ET) communication scheme. In DSSL problems, training data consisting of labeled and unlabeled samples are distributed over a communication network. Traditional semi-supervised learning (SSL) algorithms cannot be used to solve DSSL problems. The proposed algorithm, denoted as ET-DSS-ELM, is based on the semi-supervised ELM (SS-ELM) algorithm, the zero gradient sum (ZGS) distributed optimization strategy and the ET communication scheme. Correspondingly, the SS-ELM algorithm is used to calculate the local initial value, the ZGS strategy is used to calculate the globally optimal value and the ET scheme is used to reduce communication times during the learning process. According to the ET scheme, each node over the communication network broadcasts its updated information only when the event occurs. Therefore, the proposed ET-DSS-ELM algorithm not only takes the advantages of traditional DSSL algorithms, but also saves network resources by reducing communication times. The convergence of the proposed ET-DSS-ELM algorithm is guaranteed by using the Lyapunov method. Finally, some simulations are given to show the efficiency of the proposed algorithm.
在本文中,我们提出了一种基于极端学习机(ELM)算法的分布式半监督学习(DSSL)算法,该算法使用事件触发(ET)通信方案在通信网络上运行。在 DSSL 问题中,包含有标签和无标签样本的训练数据分布在通信网络上。传统的半监督学习(SSL)算法不能用于解决 DSSL 问题。所提出的算法,记为 ET-DSS-ELM,基于半监督 ELM(SS-ELM)算法、零梯度和(ZGS)分布式优化策略和 ET 通信方案。相应地,SS-ELM 算法用于计算局部初始值,ZGS 策略用于计算全局最优值,ET 方案用于减少学习过程中的通信次数。根据 ET 方案,通信网络上的每个节点仅在事件发生时广播其更新信息。因此,所提出的 ET-DSS-ELM 算法不仅利用了传统 DSSL 算法的优势,还通过减少通信次数节省了网络资源。通过使用 Lyapunov 方法保证了所提出的 ET-DSS-ELM 算法的收敛性。最后,给出了一些仿真结果以显示所提出算法的效率。