Suppr超能文献

脑电图静息态大规模脑网络动力学与抑郁症状相关。

EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms.

作者信息

Damborská Alena, Tomescu Miralena I, Honzírková Eliška, Barteček Richard, Hořínková Jana, Fedorová Sylvie, Ondruš Šimon, Michel Christoph M

机构信息

Department of Basic Neurosciences, Campus Biotech, University of Geneva, Geneva, Switzerland.

Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia.

出版信息

Front Psychiatry. 2019 Aug 9;10:548. doi: 10.3389/fpsyt.2019.00548. eCollection 2019.

Abstract

The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-Åsberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.

摘要

先前关于抑郁症患者静息态脑电图(EEG)微状态的少数研究表明,与健康受试者相比,微状态的时间特征发生了改变。我们测试了静息态微状态时间特征是否能够捕捉与抑郁症状相关的大规模脑网络动态活动。为了评估静息态大规模脑网络动力学与抑郁症状之间的可能关系,我们对19例双相情感障碍抑郁发作、复发性抑郁症的中度至重度抑郁症患者和19名健康对照者进行了EEG微状态分析。微状态分析在所有受试者的全局聚类中揭示了六类微状态(A - F)。微状态的时间特征在组间没有差异。在患者组中,蒙哥马利 - 阿斯伯格抑郁评定量表上较高的抑郁症状与微状态A的较高发生率相关(斯皮尔曼等级相关,r = 0.70,p < 0.01)。我们的结果表明,在抑郁发作期间,静息态EEG微状态参数中观察到的个体差异可能反映了与抑郁症状相关的大规模脑网络动力学改变。需要在更大的队列中进行重复研究,以评估微状态分析方法在个体水平客观抑郁评估中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/958c/6704975/630c894b6929/fpsyt-10-00548-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验