1 Functional Brain Mapping Lab, University of Geneva , Geneva, Switzerland .
2 Center for Biomedical Imaging (CIBM) , Geneva, Switzerland .
Brain Connect. 2017 Dec;7(10):671-682. doi: 10.1089/brain.2016.0476. Epub 2017 Nov 17.
Using electroencephalography (EEG) to elucidate the spontaneous activation of brain resting-state networks (RSNs) is nontrivial as the signal of interest is of low amplitude and it is difficult to distinguish the underlying neural sources. Using the principles of electric field topographical analysis, it is possible to estimate the meta-stable states of the brain (i.e., the resting-state topographies, so-called microstates). We estimated seven resting-state topographies explaining the EEG data set with k-means clustering (N = 164, 256 electrodes). Using a method specifically designed to localize the sources of broadband EEG scalp topographies by matching sensor and source space temporal patterns, we demonstrated that we can estimate the EEG RSNs reliably by measuring the reproducibility of our findings. After subtracting their mean from the seven EEG RSNs, we identified seven state-specific networks. The mean map includes regions known to be densely anatomically and functionally connected (superior frontal, superior parietal, insula, and anterior cingulate cortices). While the mean map can be interpreted as a "router," crosslinking multiple functional networks, the seven state-specific RSNs partly resemble and extend previous functional magnetic resonance imaging-based networks estimated as the hemodynamic correlates of four canonical EEG microstates.
使用脑电图 (EEG) 来阐明大脑静息状态网络 (RSN) 的自发激活并非易事,因为感兴趣的信号幅度较低,并且难以区分潜在的神经源。使用电场拓扑分析的原理,可以估计大脑的亚稳态(即静息状态拓扑,所谓的微状态)。我们使用 k-均值聚类 (N=164, 256 个电极) 对七个静息状态拓扑进行了估计,以解释 EEG 数据集。使用专门设计的通过匹配传感器和源空间时间模式来定位宽带 EEG 头皮拓扑源的方法,我们通过测量我们发现的可重复性来证明我们可以可靠地估计 EEG RSN。从七个 EEG RSN 中减去它们的平均值后,我们确定了七个特定状态的网络。平均图谱包括已知在解剖和功能上紧密连接的区域(额上回、顶上回、脑岛和前扣带皮质)。虽然平均图谱可以被解释为“路由器”,连接多个功能网络,但七个特定状态的 RSN 部分类似于并扩展了以前基于功能磁共振成像估计的网络,作为四个经典 EEG 微状态的血液动力学相关物。