Laboratoire de Matière Condensée et Sciences Interdisciplinaires (LaMCScI), B. P. 1014, Faculty of Science, Mohammed V University, Rabat, Morocco.
Phys Chem Chem Phys. 2019 Sep 18;21(36):19951-19962. doi: 10.1039/c9cp03230d.
Arsenene, a single-layer arsenic nanosheet with a honeycomb structure, has recently attracted increasing attention due to its numerous exceptional properties. In this study, density functional theory (DFT) calculations were employed to investigate and compare the interactions of Li, Na and Mg ions with the Arsenene monolayer for the purpose of using it as an anode in lithium, sodium, and magnesium ion rechargeable batteries. The results indicated that the Li, Na and Mg adatoms preferentially adsorbed on the valley sites, with negative adsorption energies of -2.55, -1.91 and -1.10 eV, respectively. This strong binding between the alkali metals and the Arsenene monolayer is an important factor for battery applications. Also, it was found that Arsenene exhibited high theoretical specific capacities of up to 1430 mA h g-1 for Li and Mg and 1073.18 mA h g-1 for Na, which are extremely higher values than those of commercially used graphite anodes (372 mA h g-1) in Li-ion batteries. Furthermore, the diffusion barrier energies of the Li, Na and Mg ions were calculated using the nudged elastic band method. The activation energy barriers of these ions showed isotropic behavior for the different pathways (X, Y, and diagonal directions), where the obtained values were 0.16, 0.05 and 0.016 eV for Li, Na, and Mg ions, respectively. Our findings indicate that the high capacity, low open circuit voltage, and ultrahigh barrier diffusion make Arsenene a good candidate for application as an anode material for rechargeable batteries.
砷烯,一种具有蜂窝状结构的单层砷纳米片,由于其众多优异的性质,最近引起了越来越多的关注。在这项研究中,采用密度泛函理论(DFT)计算研究和比较了 Li、Na 和 Mg 离子与砷烯单层的相互作用,旨在将其用作锂离子、钠离子和镁离子可充电电池的阳极。结果表明,Li、Na 和 Mg adatoms 优先吸附在谷位,负吸附能分别为-2.55、-1.91 和-1.10 eV。碱金属与砷烯单层之间的这种强结合是电池应用的一个重要因素。此外,还发现砷烯具有高达 1430 mA h g-1 的理论比容量(Li 和 Mg)和 1073.18 mA h g-1 的理论比容量(Na),远高于商业上用于锂离子电池的石墨阳极(372 mA h g-1)的理论比容量。此外,还使用 nudged elastic band 方法计算了 Li、Na 和 Mg 离子的扩散势垒能。这些离子的激活能势垒对于不同的路径(X、Y 和对角方向)表现出各向同性行为,得到的 Li、Na 和 Mg 离子的值分别为 0.16、0.05 和 0.016 eV。我们的研究结果表明,高容量、低开路电压和超高扩散势垒使砷烯成为一种有前途的可充电电池阳极材料。