Suppr超能文献

基于 MoS 多层的移动异质结中规模化的直流产生。

Scaled-up Direct-Current Generation in MoS Multilayer-Based Moving Heterojunctions.

机构信息

School of Electrical Engineering and Automation , Jiangxi University of Science and Technology , Ganzhou 341000 , China.

College of New Energy and Materials , China University of Petroleum , Beijing 102249 , China.

出版信息

ACS Appl Mater Interfaces. 2019 Sep 25;11(38):35404-35409. doi: 10.1021/acsami.9b09851. Epub 2019 Sep 11.

Abstract

Techniques for scaling-up the direct-current (dc) triboelectricity generation in MoS multilayer-based Schottky nanocontacts are vital for exploiting the nanoscale phenomenon for real-world applications of energy harvesting and sensing. Here, we show that scaling-up the dc output can be realized by using various MoS multilayer-based heterojunctions including metal/semiconductor (MS), metal/insulator (tens of nanometers)/semiconductor (MIS), and semiconductor/insulator (a few nanometers)/semiconductor (SIS) moving structures. It is shown that the tribo-excited energetic charge carriers can overcome the interfacial potential barrier by different mechanisms, such as thermionic emission, defect conduction, and quantum tunneling in the case of MS, MIS, and SIS moving structures. By tailoring the interface structure, it is possible to trigger electrical conduction resulting in optimized power output. We also show that the band bending in the surface-charged region of MoS determines the direction of the dc power output. Our experimental results show that engineering the interface structure opens up new avenues for developing next-generation semiconductor-based mechanical energy conversion with high performance.

摘要

将基于 MoS 多层的肖特基纳米触点中的直流(dc)摩擦电的输出放大化的技术对于开发用于能量收集和传感的纳米尺度现象的实际应用至关重要。在这里,我们表明通过使用各种基于 MoS 多层的异质结构,包括金属/半导体(MS)、金属/绝缘体(数十纳米)/半导体(MIS)和半导体/绝缘体(几纳米)/半导体(SIS)移动结构,可以实现直流输出的放大化。结果表明,在 MS、MIS 和 SIS 移动结构的情况下,摩擦激发的高能载流子可以通过不同的机制克服界面势垒,例如热电子发射、缺陷传导和量子隧穿。通过调整界面结构,可以触发电传导,从而优化功率输出。我们还表明,MoS 表面带电区域的能带弯曲决定了直流功率输出的方向。我们的实验结果表明,对界面结构的工程设计为开发具有高性能的下一代基于半导体的机械能转换开辟了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验