CNR-IMM , Strada VIII, 5, 95121 Catania, Italy.
Dipartimento di Fisica e Chimica (DiFC), Università degli Studi di Palermo , Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
ACS Appl Mater Interfaces. 2017 Jul 12;9(27):23164-23174. doi: 10.1021/acsami.7b04919. Epub 2017 Jun 26.
One of the main challenges to exploit molybdenum disulfide (MoS) potentialities for the next-generation complementary metal oxide semiconductor (CMOS) technology is the realization of p-type or ambipolar field-effect transistors (FETs). Hole transport in MoS FETs is typically hampered by the high Schottky barrier height (SBH) for holes at source/drain contacts, due to the Fermi level pinning close to the conduction band. In this work, we show that the SBH of multilayer MoS surface can be tailored at nanoscale using soft O plasma treatments. The morphological, chemical, and electrical modifications of MoS surface under different plasma conditions were investigated by several microscopic and spectroscopic characterization techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), conductive AFM (CAFM), aberration-corrected scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). Nanoscale current-voltage mapping by CAFM showed that the SBH maps can be conveniently tuned starting from a narrow SBH distribution (from 0.2 to 0.3 eV) in the case of pristine MoS to a broader distribution (from 0.2 to 0.8 eV) after 600 s O plasma treatment, which allows both electron and hole injection. This lateral inhomogeneity in the electrical properties was associated with variations of the incorporated oxygen concentration in the MoS multilayer surface, as shown by STEM/EELS analyses and confirmed by ab initio density functional theory (DFT) calculations. Back-gated multilayer MoS FETs, fabricated by self-aligned deposition of source/drain contacts in the O plasma functionalized areas, exhibit ambipolar current transport with on/off current ratio I/I ≈ 10 and field-effect mobilities of 11.5 and 7.2 cm V s for electrons and holes, respectively. The electrical behavior of these novel ambipolar devices is discussed in terms of the peculiar current injection mechanisms in the O plasma functionalized MoS surface.
利用二硫化钼(MoS)的潜力开发下一代互补金属氧化物半导体(CMOS)技术面临的主要挑战之一是实现 p 型或双极型场效应晶体管(FET)。由于费米能级被钉扎在导带附近,源/漏接触处空穴的肖特基势垒高度(SBH)很高,因此 MoS FET 中的空穴输运通常会受到阻碍。在这项工作中,我们表明可以使用软氧等离子体处理在纳米尺度上调整多层 MoS 表面的 SBH。通过几种微观和光谱表征技术,包括 X 射线光电子能谱(XPS)、原子力显微镜(AFM)、导电 AFM(CAFM)、像差校正扫描透射电子显微镜(STEM)和电子能量损失光谱(EELS),研究了不同等离子体条件下 MoS 表面的形态、化学和电学改性。CAFM 的纳米级电流-电压映射表明,通过软氧等离子体处理,SBH 图可以从原始 MoS 的窄 SBH 分布(0.2 到 0.3 eV)方便地调整到更宽的分布(0.2 到 0.8 eV),从而允许电子和空穴注入。这种电性能的横向不均匀性与 MoS 多层表面中掺入氧浓度的变化有关,这一点通过 STEM/EELS 分析得到证实,并通过从头算密度泛函理论(DFT)计算得到确认。在经过 O 等离子体功能化区域的自对准源/漏接触沉积制造的背栅式多层 MoS FET 中,表现出双极电流传输,电子和空穴的开/关电流比 I/I 分别约为 10,场效应迁移率分别为 11.5 和 7.2 cm V s。这些新型双极器件的电行为根据 O 等离子体功能化 MoS 表面的特殊电流注入机制进行了讨论。