Suppr超能文献

用于复杂自由能景观的深度表示学习

Deep Representation Learning for Complex Free-Energy Landscapes.

作者信息

Zhang Jun, Lei Yao-Kun, Che Xing, Zhang Zhen, Yang Yi Isaac, Gao Yi Qin

机构信息

Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering , Peking University , 100871 Beijing , China.

Biodynamic Optical Imaging Center , Peking University , 100871 Beijing , China.

出版信息

J Phys Chem Lett. 2019 Sep 19;10(18):5571-5576. doi: 10.1021/acs.jpclett.9b02012. Epub 2019 Sep 5.

Abstract

In this Letter, we analyzed the inductive bias underlying complex free-energy landscapes (FELs) and exploited it to train deep neural networks that yield reduced and clustered representation for the FEL. Our parametric method, called information distilling of metastability (IDM), is end-to-end differentiable and thus scalable to ultralarge data sets. IDM is able to perform clustering in the meantime of reducing the dimensionality. Besides, as an unsupervised learning method, IDM differs from many existing dimensionality reduction and clustering methods in that it requires neither a cherry-picked distance metric nor the ground-true number of clusters defined a priori, and it can be used to unroll and zoom in on the hierarchical FEL with respect to different time scales. Through multiple experiments, we show that IDM can achieve physically meaningful representations that partition the FEL into well-defined metastable states that hence are amenable for downstream tasks such as mechanism analysis and kinetic modeling.

摘要

在本信函中,我们分析了复杂自由能景观(FEL)背后的归纳偏差,并利用它来训练深度神经网络,从而为FEL生成简化且聚类的表示。我们的参数方法称为亚稳性信息蒸馏(IDM),它是端到端可微的,因此可扩展到超大数据集。IDM能够在降维的同时进行聚类。此外,作为一种无监督学习方法,IDM与许多现有的降维和聚类方法不同,它既不需要精心挑选的距离度量,也不需要事先定义的真实聚类数,并且可用于展开和放大不同时间尺度下的分层FEL。通过多次实验,我们表明IDM可以实现具有物理意义的表示,将FEL划分为定义明确的亚稳态,因此适用于诸如机理分析和动力学建模等下游任务。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验