Zhang Jun, Lei Yao-Kun, Che Xing, Zhang Zhen, Yang Yi Isaac, Gao Yi Qin
Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering , Peking University , 100871 Beijing , China.
Biodynamic Optical Imaging Center , Peking University , 100871 Beijing , China.
J Phys Chem Lett. 2019 Sep 19;10(18):5571-5576. doi: 10.1021/acs.jpclett.9b02012. Epub 2019 Sep 5.
In this Letter, we analyzed the inductive bias underlying complex free-energy landscapes (FELs) and exploited it to train deep neural networks that yield reduced and clustered representation for the FEL. Our parametric method, called information distilling of metastability (IDM), is end-to-end differentiable and thus scalable to ultralarge data sets. IDM is able to perform clustering in the meantime of reducing the dimensionality. Besides, as an unsupervised learning method, IDM differs from many existing dimensionality reduction and clustering methods in that it requires neither a cherry-picked distance metric nor the ground-true number of clusters defined a priori, and it can be used to unroll and zoom in on the hierarchical FEL with respect to different time scales. Through multiple experiments, we show that IDM can achieve physically meaningful representations that partition the FEL into well-defined metastable states that hence are amenable for downstream tasks such as mechanism analysis and kinetic modeling.
在本信函中,我们分析了复杂自由能景观(FEL)背后的归纳偏差,并利用它来训练深度神经网络,从而为FEL生成简化且聚类的表示。我们的参数方法称为亚稳性信息蒸馏(IDM),它是端到端可微的,因此可扩展到超大数据集。IDM能够在降维的同时进行聚类。此外,作为一种无监督学习方法,IDM与许多现有的降维和聚类方法不同,它既不需要精心挑选的距离度量,也不需要事先定义的真实聚类数,并且可用于展开和放大不同时间尺度下的分层FEL。通过多次实验,我们表明IDM可以实现具有物理意义的表示,将FEL划分为定义明确的亚稳态,因此适用于诸如机理分析和动力学建模等下游任务。