Department of Physics and Astronomy , University of Kansas , Lawrence , Kansas 66045 , United States.
ACS Appl Mater Interfaces. 2019 Sep 11;11(36):33390-33398. doi: 10.1021/acsami.9b09262. Epub 2019 Sep 3.
Two-dimensional material van der Waals (vdW) heterostructures provide an excellent platform for design of novel optoelectronics. In this work, transition-metal dichalcogenide WS nanodiscs (WS-NDs) of lateral dimension of 200-400 nm and layer number of 4-7 were synthesized on graphene using a layer-by-layer, transfer-free chemical vapor deposition. On this WS-NDs/graphene vdW heterostructures, localized surface plasmonic resonance (LSPR) was achieved, resulting in remarkably enhanced light absorption as compared to the counterpart devices with a continuous WS layer (WS-CL/graphene). Remarkably, the photoresponsivity of 6.4 A/W on the WS-NDs/graphene photodetectors is seven times higher than that (0.91 A/W) of the WS-CL/graphene vdW heterostructures at an incident 550 nm light intensity of 10 μW/cm. Furthermore, the WS-NDs/graphene photodetectors exhibit higher sensitivity to lower lights. Under 550 nm light illumination of 3 μW/cm, which is beyond the sensitivity limit of the WS-CL/graphene photodetectors, high photoresponsivity of 8.05 A/W and detectivity of 2.8 × 10 Jones are achieved at = 5 V. This result demonstrates that the LSPR WS-NDs/graphene vdW heterostructure is promising for scalable high-performance optoelectronics applications.
二维材料范德华(vdW)异质结构为新型光电的设计提供了极好的平台。在这项工作中,通过逐层、无转移的化学气相沉积法,在石墨烯上合成了横向尺寸为 200-400nm 且层数为 4-7 的过渡金属二卤化物 WS 纳米盘(WS-NDs)。在 WS-NDs/石墨烯 vdW 异质结构上,实现了局域表面等离子体共振(LSPR),与具有连续 WS 层(WS-CL/石墨烯)的对应器件相比,光吸收显著增强。值得注意的是,WS-NDs/石墨烯光电探测器的光响应度在 550nm 光强为 10μW/cm 的入射光下高达 6.4A/W,比 WS-CL/石墨烯 vdW 异质结构的 0.91A/W 高 7 倍。此外,WS-NDs/石墨烯光电探测器对较低的光具有更高的灵敏度。在 550nm 光强为 3μW/cm 的光照下,其超过了 WS-CL/石墨烯光电探测器的灵敏度极限,在 = 5V 时,光电响应度高达 8.05A/W,探测率为 2.8×10 Jones。这一结果表明,LSPR WS-NDs/石墨烯 vdW 异质结构有望应用于可扩展的高性能光电领域。