Muro-García Teresa, Martín-Suárez Soraya, Espinosa Nelson, Valcárcel-Martín Roberto, Marinas Ainhoa, Zaldumbide Laura, Galbarriatu Lara, Sierra Amanda, Fuentealba Pablo, Encinas Juan Manuel
The Neural Stem Cell and Neurogenesis Laboratory, Achucarro Basque Center for Neuroscience, Leioa, Spain.
Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.
Front Cell Dev Biol. 2019 Aug 20;7:158. doi: 10.3389/fcell.2019.00158. eCollection 2019.
Adult neurogenesis persists in the adult hippocampus due to the presence of multipotent neural stem cells (NSCs). Hippocampal neurogenesis is involved in a range of cognitive functions and is tightly regulated by neuronal activity. NSCs respond promptly to physiological and pathological stimuli altering their neurogenic and gliogenic potential. In a mouse model of mesial temporal lobe epilepsy (MTLE), seizures triggered by the intrahippocampal injection of the glutamate receptor agonist kainic acid (KA) induce NSCs to convert into reactive NSCs (React-NSCs) which stop producing new neurons and ultimately generate reactive astrocytes thus contributing to the development of hippocampal sclerosis and abolishing neurogenesis. We herein show how seizures triggered by the injection of KA in the amygdala, an alternative model of MTLE which allows parallel experimental manipulation in the dentate gyrus, also trigger the induction of React-NSCs and provoke the disruption of the neurogenic niche resulting in impaired neurogenesis. These results highlight the sensitivity of NSCs to the surrounding neuronal circuit activity and demonstrate that the induction of React-NSCs and the disruption of the neurogenic niche are not due to the direct effect of KA in the hippocampus. These results also suggest that neurogenesis might be lost in the hippocampus of patients with MTLE. Indeed we provide results from human MTLE samples absence of cell proliferation, of neural stem cell-like cells and of neurogenesis.
由于多能神经干细胞(NSCs)的存在,成体神经发生在成年海马体中持续存在。海马体神经发生参与一系列认知功能,并受到神经元活动的严格调控。神经干细胞对生理和病理刺激迅速做出反应,改变其神经发生和胶质发生潜能。在颞叶内侧癫痫(MTLE)小鼠模型中,海马内注射谷氨酸受体激动剂 kainic acid(KA)引发的癫痫发作会诱导神经干细胞转变为反应性神经干细胞(React-NSCs),后者停止产生新的神经元并最终生成反应性星形胶质细胞,从而促进海马硬化的发展并消除神经发生。我们在此展示了在杏仁核中注射 KA 引发的癫痫发作,这是 MTLE 的另一种模型,允许在齿状回中进行平行实验操作,也会触发 React-NSCs 的诱导并引发神经发生微环境的破坏,导致神经发生受损。这些结果突出了神经干细胞对周围神经元回路活动的敏感性,并表明 React-NSCs 的诱导和神经发生微环境的破坏并非由于 KA 对海马体的直接作用。这些结果还表明,MTLE 患者的海马体中可能会丧失神经发生。事实上,我们提供了来自人类 MTLE 样本的结果,这些样本缺乏细胞增殖、神经干细胞样细胞和神经发生。