Nielles-Vallespin Sonia, Scott Andrew, Ferreira Pedro, Khalique Zohya, Pennell Dudley, Firmin David
Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.
NHLI, Imperial College of Science, Technology and Medicine, London, UK.
J Magn Reson Imaging. 2020 Aug;52(2):348-368. doi: 10.1002/jmri.26912. Epub 2019 Sep 4.
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
心肌的三维微结构是心脏机械和电学特性的基础。心肌细胞在心室壁深度方向呈螺旋状排列,其缩短导致心脏收缩时出现宏观扭转、扭曲和缩短。此外,心肌细胞被剪切层分隔成薄片,在左心室壁宏观增厚过程中,这些剪切层会重新定向、滑动和剪切。心脏扩散为无创研究心肌的三维微结构提供了一种手段。磁共振扩散的基本原理是,在存在大的扩散编码梯度时,MRI信号会因水的自扩散而衰减。由于水分子受到生物组织边界(细胞膜、胶原层等)的限制,描绘它们的扩散行为可以阐明它们所嵌入的心肌微结构的形状。因此,心脏扩散不仅提供了一种无创手段来了解健康心肌在心脏收缩过程中微观结构的动态变化,还能了解疾病状态下的病理生理变化。这项独特而创新的技术具有巨大潜力,可通过新颖的微观结构和功能评估改善临床诊断。体内心脏扩散方法可直接应用于患者,为一系列临床上重要的心脏疾病的诊断研究和治疗评估开辟了新途径。这篇综述文章描述了左心室的三维微观结构,解释了体内和体外心脏磁共振扩散采集及后处理技术,以及迄今为止的临床应用。证据水平:1 技术效能:3期 《磁共振成像杂志》2019年。《磁共振成像杂志》2020年;52:348 - 368。