Department of Radiology, Stanford University, Stanford, California.
Stanford Cardiovascular Institute, Stanford University, Stanford, California.
Am J Physiol Heart Circ Physiol. 2022 Aug 1;323(2):H257-H275. doi: 10.1152/ajpheart.00059.2022. Epub 2022 Jun 3.
The complex and highly organized structural arrangement of some five billion cardiomyocytes directs the coordinated electrical activity and mechanical contraction of the human heart. The characteristic transmural change in cardiomyocyte orientation underlies base-to-apex shortening, circumferential shortening, and left ventricular torsion during contraction. Individual cardiomyocytes shorten ∼15% and increase in diameter ∼8%. Remarkably, however, the left ventricular wall thickens by up to 30-40%. To accommodate this, the myocardium must undergo significant structural rearrangement during contraction. At the mesoscale, collections of cardiomyocytes are organized into sheetlets, and sheetlet shear is the fundamental mechanism of rearrangement that produces wall thickening. Herein, we review the histological and physiological studies of myocardial mesostructure that have established the sheetlet shear model of wall thickening. Recent developments in tissue clearing techniques allow for imaging of whole hearts at the cellular scale, whereas magnetic resonance imaging (MRI) and computed tomography (CT) can image the myocardium at the mesoscale (100 µm to 1 mm) to resolve cardiomyocyte orientation and organization. Through histology, cardiac diffusion tensor imaging (DTI), and other modalities, mesostructural sheetlets have been confirmed in both animal and human hearts. Recent in vivo cardiac DTI methods have measured reorientation of sheetlets during the cardiac cycle. We also examine the role of pathological cardiac remodeling on sheetlet organization and reorientation, and the impact this has on ventricular function and dysfunction. We also review the unresolved mesostructural questions and challenges that may direct future work in the field.
大约 50 亿个心肌细胞的复杂和高度组织化的结构排列指导着人心的协调电活动和机械收缩。心肌细胞方向的特征性穿壁变化是收缩时基底到顶端缩短、圆周缩短和左心室扭转的基础。单个心肌细胞缩短约 15%,直径增加约 8%。然而,令人惊讶的是,左心室壁增厚了 30-40%。为了适应这种情况,心肌在收缩过程中必须经历显著的结构重排。在介观尺度上,心肌细胞的集合被组织成薄片,而薄片剪切是产生壁增厚的基本重排机制。本文综述了心肌介观结构的组织学和生理学研究,这些研究确立了薄片剪切模型作为壁增厚的机制。组织透明技术的最新发展允许在细胞尺度上对整个心脏进行成像,而磁共振成像(MRI)和计算机断层扫描(CT)可以在介观尺度(100μm 至 1mm)上对心肌进行成像,以解析心肌细胞的方向和组织。通过组织学、心脏扩散张量成像(DTI)和其他模态,已经在动物和人心肌中证实了介观结构的薄片。最近的活体心脏 DTI 方法已经测量了心脏周期中薄片的重新定向。我们还研究了病理性心脏重构对薄片组织和重新定向的作用,以及这对心室功能和功能障碍的影响。我们还回顾了未解决的介观结构问题和挑战,这些问题和挑战可能指导该领域的未来工作。