Hoppe Elisabeth, Thamm Florian, Körzdörfer Gregor, Syben Christopher, Schirrmacher Franziska, Nittka Mathias, Pfeuffer Josef, Meyer Heiko, Maier Andreas
Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
Siemens Healthcare, Application Development, Erlangen, Germany.
Stud Health Technol Inform. 2019 Sep 3;267:126-133. doi: 10.3233/SHTI190816.
Magnetic Resonance Fingerprinting (MRF) is an imaging technique acquiring unique time signals for different tissues. Although the acquisition is highly accelerated, the reconstruction time remains a problem, as the state-of-the-art template matching compares every signal with a set of possible signals. To overcome this limitation, deep learning based approaches, e.g. Convolutional Neural Networks (CNNs) have been proposed. In this work, we investigate the applicability of Recurrent Neural Networks (RNNs) for this reconstruction problem, as the signals are correlated in time. Compared to previous methods based on CNNs, RNN models yield significantly improved results using in-vivo data.
磁共振指纹识别(MRF)是一种为不同组织获取独特时间信号的成像技术。尽管采集过程得到了高度加速,但重建时间仍然是个问题,因为目前最先进的模板匹配需要将每个信号与一组可能的信号进行比较。为了克服这一限制,人们提出了基于深度学习的方法,例如卷积神经网络(CNN)。在这项工作中,我们研究递归神经网络(RNN)在这个重建问题上的适用性,因为信号在时间上是相关的。与之前基于CNN的方法相比,RNN模型在使用体内数据时产生了显著更好的结果。