Suppr超能文献

基于去噪和自注意力金字塔卷积神经网络的磁共振指纹成像加速重建。

Acceleration of Magnetic Resonance Fingerprinting Reconstruction Using Denoising and Self-Attention Pyramidal Convolutional Neural Network.

机构信息

Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.

出版信息

Sensors (Basel). 2022 Feb 7;22(3):1260. doi: 10.3390/s22031260.

Abstract

Magnetic resonance fingerprinting (MRF) based on echo-planar imaging (EPI) enables whole-brain imaging to rapidly obtain T1 and T2* relaxation time maps. Reconstructing parametric maps from the MRF scanned baselines by the inner-product method is computationally expensive. We aimed to accelerate the reconstruction of parametric maps for MRF-EPI by using a deep learning model. The proposed approach uses a two-stage model that first eliminates noise and then regresses the parametric maps. Parametric maps obtained by dictionary matching were used as a reference and compared with the prediction results of the two-stage model. MRF-EPI scans were collected from 32 subjects. The signal-to-noise ratio increased significantly after the noise removal by the denoising model. For prediction with scans in the testing dataset, the mean absolute percentage errors between the standard and the final two-stage model were 3.1%, 3.2%, and 1.9% for T1, and 2.6%, 2.3%, and 2.8% for T2* in gray matter, white matter, and lesion locations, respectively. Our proposed two-stage deep learning model can effectively remove noise and accurately reconstruct MRF-EPI parametric maps, increasing the speed of reconstruction and reducing the storage space required by dictionaries.

摘要

基于回波平面成像(EPI)的磁共振指纹技术(MRF)能够实现快速获得全脑 T1 和 T2弛豫时间图。通过内积法从 MRF 扫描的基线重建参数图在计算上是昂贵的。我们旨在通过使用深度学习模型来加速 MRF-EPI 的参数图重建。所提出的方法使用两阶段模型,首先消除噪声,然后回归参数图。字典匹配获得的参数图用作参考,并与两阶段模型的预测结果进行比较。从 32 名受试者中收集了 MRF-EPI 扫描。通过去噪模型去除噪声后,信噪比显著提高。对于在测试数据集扫描中的预测,标准和最终两阶段模型之间的 T1 的平均绝对百分比误差分别为 3.1%、3.2%和 1.9%,灰质、白质和病变位置的 T2分别为 2.6%、2.3%和 2.8%。我们提出的两阶段深度学习模型可以有效地去除噪声并准确地重建 MRF-EPI 参数图,提高了重建速度并减少了字典所需的存储空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da32/8838455/df7018727a67/sensors-22-01260-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验