Suppr超能文献

利用机器学习和最小细菌素结构域的生物物理选择发现新型抗菌肽。

Novel antimicrobial peptide discovery using machine learning and biophysical selection of minimal bacteriocin domains.

机构信息

Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.

Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana.

出版信息

Drug Dev Res. 2020 Feb;81(1):43-51. doi: 10.1002/ddr.21601. Epub 2019 Sep 4.

Abstract

Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin-derived compound design and testing that combines sequence-free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20-mer candidate peptides and scored them for charge, α-helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical-based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.

摘要

细菌素是细菌核糖体产生的抗菌肽,代表了一种有前途的抗生素替代品的未开发来源。然而,细菌素表现出不同的作用机制、活性范围狭窄以及天然产物分离中的固有挑战,使得体外验证假定的细菌素有一定难度。细菌素的亚组通过与细菌膜的有利物理相互作用发挥其抗菌作用,这种相互作用由肽的电荷、疏水性和构象介导。我们开发了一种细菌素衍生化合物设计和测试的流水线,该流水线结合了使用机器学习进行细菌素的无序列预测和一个简单的生物物理特征筛选,以生成可以合成和评估活性的 20 个氨基酸肽。我们总共生成了 28895 个 20 肽候选肽,并对其电荷、α-螺旋性和疏水性矩进行了评分。在这些肽中,我们选择了 16 个序列进行合成,并评估了它们的抗菌、细胞毒性和溶血活性。在我们的生物物理参数中,总体得分最高的肽对大肠杆菌和铜绿假单胞菌表现出显著的抗菌活性。我们的综合方法结合了机器学习和基于生物物理的最小区域确定,为快速发现可用于快速合成和评估治疗用途的细菌素候选物提供了一种新方法。

相似文献

2
Discovery of potent antimicrobial peptide analogs of Ixosin-B.
Bioorg Med Chem Lett. 2012 Jun 15;22(12):4185-8. doi: 10.1016/j.bmcl.2012.04.018. Epub 2012 Apr 20.
4
Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78.
Biochim Biophys Acta. 2015 May;1848(5):1139-46. doi: 10.1016/j.bbamem.2015.02.001. Epub 2015 Feb 10.
5
Rational design of syn-safencin, a novel linear antimicrobial peptide derived from the circular bacteriocin safencin AS-48.
J Antibiot (Tokyo). 2018 Jun;71(6):592-600. doi: 10.1038/s41429-018-0032-4. Epub 2018 Feb 20.
6
Salt-resistant short antimicrobial peptides.
Biopolymers. 2016 May;106(3):345-56. doi: 10.1002/bip.22819.
7
Structure-activity relationship of potent antimicrobial peptide analogs of Ixosin-B amide.
Bioorg Med Chem Lett. 2013 May 15;23(10):2929-32. doi: 10.1016/j.bmcl.2013.03.053. Epub 2013 Mar 25.

引用本文的文献

2
Deep learning neural network development for the classification of bacteriocin sequences produced by lactic acid bacteria.
F1000Res. 2025 Jun 20;13:981. doi: 10.12688/f1000research.154432.2. eCollection 2024.
3
Recent Applications of Artificial Intelligence in Discovery of New Antibacterial Agents.
Adv Appl Bioinform Chem. 2024 Dec 3;17:139-157. doi: 10.2147/AABC.S484321. eCollection 2024.
5
BaPreS: a software tool for predicting bacteriocins using an optimal set of features.
BMC Bioinformatics. 2023 Aug 17;24(1):313. doi: 10.1186/s12859-023-05330-z.
6
Diagnosis, Treatment, and Management of Otitis Media with Artificial Intelligence.
Diagnostics (Basel). 2023 Jul 7;13(13):2309. doi: 10.3390/diagnostics13132309.
9
Evolutionary and guided development of novel peptide analogues for antibacterial activity against ESKAPE pathogens.
Curr Res Microb Sci. 2023 Mar 17;4:100183. doi: 10.1016/j.crmicr.2023.100183. eCollection 2023.
10
Rationally Designed Minimal Bioactive Domains of AS-48 Bacteriocin Homologs Possess Potent Antileishmanial Properties.
Microbiol Spectr. 2022 Dec 21;10(6):e0265822. doi: 10.1128/spectrum.02658-22. Epub 2022 Nov 7.

本文引用的文献

1
Identifying antimicrobial peptides using word embedding with deep recurrent neural networks.
Bioinformatics. 2019 Jun 1;35(12):2009-2016. doi: 10.1093/bioinformatics/bty937.
2
Rational design of syn-safencin, a novel linear antimicrobial peptide derived from the circular bacteriocin safencin AS-48.
J Antibiot (Tokyo). 2018 Jun;71(6):592-600. doi: 10.1038/s41429-018-0032-4. Epub 2018 Feb 20.
3
The Modification and Design of Antimicrobial Peptide.
Curr Pharm Des. 2018;24(8):904-910. doi: 10.2174/1381612824666180213130318.
4
Using bacterial genomes and essential genes for the development of new antibiotics.
Biochem Pharmacol. 2017 Jun 15;134:74-86. doi: 10.1016/j.bcp.2016.12.002. Epub 2016 Dec 8.
5
Total Synthesis of Circular Bacteriocins by Butelase 1.
J Am Chem Soc. 2016 Jun 8;138(22):6968-71. doi: 10.1021/jacs.6b04310. Epub 2016 May 27.
7
Bacteriocins of lactic acid bacteria: extending the family.
Appl Microbiol Biotechnol. 2016 Apr;100(7):2939-51. doi: 10.1007/s00253-016-7343-9. Epub 2016 Feb 10.
8
Bioengineering Lantibiotics for Therapeutic Success.
Front Microbiol. 2015 Nov 27;6:1363. doi: 10.3389/fmicb.2015.01363. eCollection 2015.
9
A large scale prediction of bacteriocin gene blocks suggests a wide functional spectrum for bacteriocins.
BMC Bioinformatics. 2015 Nov 11;16:381. doi: 10.1186/s12859-015-0792-9.
10
Antimicrobial Peptide Structure and Mechanism of Action: A Focus on the Role of Membrane Structure.
Curr Top Med Chem. 2016;16(1):25-39. doi: 10.2174/1568026615666150703121700.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验