Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana.
Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana.
Drug Dev Res. 2020 Feb;81(1):43-51. doi: 10.1002/ddr.21601. Epub 2019 Sep 4.
Bacteriocins, the ribosomally produced antimicrobial peptides of bacteria, represent an untapped source of promising antibiotic alternatives. However, bacteriocins display diverse mechanisms of action, a narrow spectrum of activity, and inherent challenges in natural product isolation making in vitro verification of putative bacteriocins difficult. A subset of bacteriocins exert their antimicrobial effects through favorable biophysical interactions with the bacterial membrane mediated by the charge, hydrophobicity, and conformation of the peptide. We have developed a pipeline for bacteriocin-derived compound design and testing that combines sequence-free prediction of bacteriocins using machine learning and a simple biophysical trait filter to generate 20 amino acid peptides that can be synthesized and evaluated for activity. We generated 28,895 total 20-mer candidate peptides and scored them for charge, α-helicity, and hydrophobic moment. Of those, we selected 16 sequences for synthesis and evaluated their antimicrobial, cytotoxicity, and hemolytic activities. Peptides with the overall highest scores for our biophysical parameters exhibited significant antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa. Our combined method incorporates machine learning and biophysical-based minimal region determination to create an original approach to swiftly discover bacteriocin candidates amenable to rapid synthesis and evaluation for therapeutic use.
细菌素是细菌核糖体产生的抗菌肽,代表了一种有前途的抗生素替代品的未开发来源。然而,细菌素表现出不同的作用机制、活性范围狭窄以及天然产物分离中的固有挑战,使得体外验证假定的细菌素有一定难度。细菌素的亚组通过与细菌膜的有利物理相互作用发挥其抗菌作用,这种相互作用由肽的电荷、疏水性和构象介导。我们开发了一种细菌素衍生化合物设计和测试的流水线,该流水线结合了使用机器学习进行细菌素的无序列预测和一个简单的生物物理特征筛选,以生成可以合成和评估活性的 20 个氨基酸肽。我们总共生成了 28895 个 20 肽候选肽,并对其电荷、α-螺旋性和疏水性矩进行了评分。在这些肽中,我们选择了 16 个序列进行合成,并评估了它们的抗菌、细胞毒性和溶血活性。在我们的生物物理参数中,总体得分最高的肽对大肠杆菌和铜绿假单胞菌表现出显著的抗菌活性。我们的综合方法结合了机器学习和基于生物物理的最小区域确定,为快速发现可用于快速合成和评估治疗用途的细菌素候选物提供了一种新方法。