Suppr超能文献

人工智能在新型抗菌药物发现中的最新应用

Recent Applications of Artificial Intelligence in Discovery of New Antibacterial Agents.

作者信息

Bagdad Youcef, Miteva Maria A

机构信息

Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France.

出版信息

Adv Appl Bioinform Chem. 2024 Dec 3;17:139-157. doi: 10.2147/AABC.S484321. eCollection 2024.

Abstract

Antimicrobial resistance (AMR) represents today a major challenge for global public health, compromising the effectiveness of treatments against a multitude of bacterial infections. In recent decades, artificial intelligence (AI) has emerged as a promising technology for the identification and development of new antibacterial agents. This review focuses on AI methodologies applied to discover new antibacterial candidates. Case studies that identified small molecules and peptides showing antimicrobial activity and demonstrating efficiency against pathogenic resistant bacteria by employing AI are summarized. We also discuss the challenges and opportunities offered by AI, highlighting the importance of AI progress for the identification of new promising antibacterial drug candidates to combat the AMR.

摘要

抗菌耐药性(AMR)如今已成为全球公共卫生面临的一项重大挑战,它削弱了针对多种细菌感染的治疗效果。近几十年来,人工智能(AI)已成为一种有前景的技术,可用于新型抗菌药物的识别与研发。本综述聚焦于应用于发现新型抗菌候选药物的人工智能方法。总结了通过人工智能识别出具有抗菌活性并对致病性耐药菌显示出有效性的小分子和肽的案例研究。我们还讨论了人工智能带来的挑战与机遇,强调了人工智能进展对于识别新型有前景的抗菌药物候选物以对抗抗菌耐药性的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/991f/11624680/2855334a6d2b/AABC-17-139-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验