Suppr超能文献

使用小视野序列降低经颅磁共振引导聚焦超声中的温度误差。

Reducing temperature errors in transcranial MR-guided focused ultrasound using a reduced-field-of-view sequence.

机构信息

Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.

Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.

出版信息

Magn Reson Med. 2020 Mar;83(3):1016-1024. doi: 10.1002/mrm.27987. Epub 2019 Sep 4.

Abstract

PURPOSE

To reduce temperature errors due to water motion in transcranial MR-guided focused ultrasound (tcMRgFUS) ablation.

THEORY AND METHODS

In tcMRgFUS, water is circulated in the transducer bowl around the patient's head for acoustic coupling and heat removal. The water moves during sonications that are monitored by MR thermometry, which causes it to alias into the brain and create temperature errors. To reduce these errors, a two-dimensional excitation pulse was implemented in a gradient-recalled echo thermometry sequence. The pulse suppresses water signal by selectively exciting the brain only, which reduces the imaging FOV. Improvements in temperature precision compared to the conventional full-FOV scan were evaluated in healthy subject scans outside the tcMRgFUS system, gel phantom scans in the system with heating, and in 2×-accelerated head phantom scans in the system without heating.

RESULTS

In vivo temperature precision (standard deviation of temperature errors) outside the tcMRgFUS system was improved 43% on average, due to the longer TR and TE of the reduced-FOV sequence. In the phantom heating experiments, the hot spot was less distorted in the reduced-FOV scans, and background temperature precision was improved 59% on average. In the accelerated head phantom temperature reconstructions, temperature precision was improved 89% using the reduced-FOV sequence.

CONCLUSIONS

Reduced-FOV temperature imaging alleviates temperature errors due to water bath motion in tcMRgFUS, and enables accelerated temperature mapping with greater precision.

摘要

目的

减少经颅磁共振引导聚焦超声(tcMRgFUS)消融中因水动造成的温度误差。

理论与方法

在 tcMRgFUS 中,水在环绕患者头部的换能器碗中循环,以实现声耦合和热量去除。水在磁共振测温监测的声处理过程中移动,这会导致其伪影进入大脑并产生温度误差。为了减少这些误差,在梯度回波测温序列中实现了二维激发脉冲。该脉冲通过选择性地仅激发大脑来抑制水信号,从而减小成像视野。在 tcMRgFUS 系统外的健康受试者扫描、系统内加热凝胶体模扫描以及系统内无加热 2×加速头部体模扫描中,评估了与传统全视野扫描相比,该方法在温度精度方面的改进。

结果

在 tcMRgFUS 系统外,由于缩短了重复时间(TR)和回波时间(TE),降低视野序列的平均温度精度标准差提高了 43%。在体模加热实验中,减少视野扫描中热点的变形程度,背景温度精度平均提高了 59%。在加速头部体模温度重建中,使用减少视野序列后温度精度提高了 89%。

结论

减少视野温度成像减轻了 tcMRgFUS 中水浴运动造成的温度误差,并实现了具有更高精度的加速温度测绘。

相似文献

1
Reducing temperature errors in transcranial MR-guided focused ultrasound using a reduced-field-of-view sequence.
Magn Reson Med. 2020 Mar;83(3):1016-1024. doi: 10.1002/mrm.27987. Epub 2019 Sep 4.
2
Simultaneous multislice MRI thermometry with a single coil using incoherent blipped-controlled aliasing.
Magn Reson Med. 2020 Feb;83(2):479-491. doi: 10.1002/mrm.27940. Epub 2019 Aug 11.
6
Head phantoms for transcranial focused ultrasound.
Med Phys. 2015 Apr;42(4):1518-27. doi: 10.1118/1.4907959.
7
Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound.
J Ther Ultrasound. 2017 May 30;5:13. doi: 10.1186/s40349-017-0092-0. eCollection 2017.
8
Specialized volumetric thermometry for improved guidance of MRgFUS in brain.
Magn Reson Med. 2017 Aug;78(2):508-517. doi: 10.1002/mrm.26385. Epub 2016 Oct 4.
9
Volumetric MRI thermometry using a three-dimensional stack-of-stars echo-planar imaging pulse sequence.
Magn Reson Med. 2018 Apr;79(4):2003-2013. doi: 10.1002/mrm.26862. Epub 2017 Aug 7.
10
Novel acoustic coupling bath using magnetite nanoparticles for MR-guided transcranial focused ultrasound surgery.
Med Phys. 2019 Dec;46(12):5444-5453. doi: 10.1002/mp.13863. Epub 2019 Oct 29.

引用本文的文献

1
A retraced spiral strategy with semi-automatic deblurring for volumetric thermometry.
Magn Reson Med. 2025 Oct;94(4):1432-1444. doi: 10.1002/mrm.30560. Epub 2025 May 20.
2
Design and Validation of a Patient-Specific Stereotactic Frame for Transcranial Ultrasound Therapy.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Aug;71(8):1030-1041. doi: 10.1109/TUFFC.2024.3420242. Epub 2024 Aug 19.
3
Iron-based coupling media for MRI-guided ultrasound surgery.
Med Phys. 2022 Dec;49(12):7373-7383. doi: 10.1002/mp.15979. Epub 2022 Nov 7.
4
A preclinical study of diffusion-weighted MRI contrast as an early indicator of thermal ablation.
Magn Reson Med. 2021 Apr;85(4):2145-2159. doi: 10.1002/mrm.28537. Epub 2020 Nov 11.

本文引用的文献

1
Simultaneous multislice MRI thermometry with a single coil using incoherent blipped-controlled aliasing.
Magn Reson Med. 2020 Feb;83(2):479-491. doi: 10.1002/mrm.27940. Epub 2019 Aug 11.
2
Spatially-segmented undersampled MRI temperature reconstruction for transcranial MR-guided focused ultrasound.
J Ther Ultrasound. 2017 May 30;5:13. doi: 10.1186/s40349-017-0092-0. eCollection 2017.
5
Transcranial MRI-Guided Focused Ultrasound: A Review of the Technologic and Neurologic Applications.
AJR Am J Roentgenol. 2015 Jul;205(1):150-9. doi: 10.2214/AJR.14.13632.
6
Accelerated MRI thermometry by direct estimation of temperature from undersampled k-space data.
Magn Reson Med. 2015 May;73(5):1914-25. doi: 10.1002/mrm.25327. Epub 2014 Jun 16.
7
A pilot study of focused ultrasound thalamotomy for essential tremor.
N Engl J Med. 2013 Aug 15;369(7):640-8. doi: 10.1056/NEJMoa1300962.
8
Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain.
J Magn Reson Imaging. 2013 Dec;38(6):1462-71. doi: 10.1002/jmri.24117. Epub 2013 Apr 4.
9
Extended Kalman filtering for continuous volumetric MR-temperature imaging.
IEEE Trans Med Imaging. 2013 Apr;32(4):711-8. doi: 10.1109/TMI.2012.2234760. Epub 2012 Dec 20.
10
Nonuniform and multidimensional Shinnar-Le Roux RF pulse design method.
Magn Reson Med. 2012 Sep;68(3):690-702. doi: 10.1002/mrm.23269. Epub 2011 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验