Suppr超能文献

比较用于监测脑部聚焦超声消融的温度处理方法。

Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain.

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.

出版信息

J Magn Reson Imaging. 2013 Dec;38(6):1462-71. doi: 10.1002/jmri.24117. Epub 2013 Apr 4.

Abstract

PURPOSE

To investigate the performance of different reconstruction methods for monitoring temperature changes during transcranial magnetic resonance imaging (MRI)-guided focused ultrasound (MRgFUS).

MATERIALS AND METHODS

Four different temperature reconstruction methods were compared in volunteers (without heating) and patients undergoing transcranial MRgFUS: single baseline subtraction, multibaseline subtraction, hybrid single baseline/referenceless reconstruction, and hybrid multibaseline/referenceless reconstruction. Absolute temperature error and temporal temperature uncertainty of the different reconstruction methods were analyzed and compared.

RESULTS

Absolute temperature errors and temporal temperature uncertainty were highest with single baseline subtraction and lowest with hybrid multibaseline/referenceless reconstruction in all areas of the brain. Pulsation of the brain and susceptibility changes from tongue motion or swallowing caused substantial temperature errors when single or multibaseline subtraction was used, which were much reduced when the referenceless component was added to the reconstruction.

CONCLUSION

Hybrid multibaseline/referenceless thermometry accurately measures temperature changes in the brain with fewer artifacts and errors due to motion than pure baseline subtraction methods.

摘要

目的

研究不同重建方法在监测经颅磁共振引导聚焦超声(MRgFUS)过程中温度变化的性能。

材料与方法

在志愿者(无加热)和接受经颅 MRgFUS 的患者中比较了四种不同的温度重建方法:单基线相减、多基线相减、混合单基线/无参考重建和混合多基线/无参考重建。分析和比较了不同重建方法的绝对温度误差和时间温度不确定性。

结果

在大脑的所有区域,单基线相减法的绝对温度误差和时间温度不确定性最高,而混合多基线/无参考重建的最低。当使用单基线或多基线相减时,由于大脑的搏动和舌运动或吞咽引起的磁化率变化会导致显著的温度误差,而当将无参考分量添加到重建中时,这些误差会大大减少。

结论

混合多基线/无参考测温法由于运动引起的伪影和误差比纯基线相减法少,因此能更准确地测量大脑中的温度变化。

相似文献

1
Comparison of temperature processing methods for monitoring focused ultrasound ablation in the brain.
J Magn Reson Imaging. 2013 Dec;38(6):1462-71. doi: 10.1002/jmri.24117. Epub 2013 Apr 4.
5
Hybrid ultrasound-MR guided HIFU treatment method with 3D motion compensation.
Magn Reson Med. 2018 May;79(5):2511-2523. doi: 10.1002/mrm.26897. Epub 2017 Sep 24.
7
Toward real-time availability of 3D temperature maps created with temporally constrained reconstruction.
Magn Reson Med. 2014 Apr;71(4):1394-404. doi: 10.1002/mrm.24783. Epub 2013 May 13.
8
MR-guidance of HIFU therapy.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:141-4. doi: 10.1109/IEMBS.2009.5334680.
9
Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase.
IEEE Trans Med Imaging. 2012 Feb;31(2):287-301. doi: 10.1109/TMI.2011.2168421. Epub 2011 Sep 19.
10
Real-time MR thermometry for monitoring HIFU ablations of the liver.
Magn Reson Med. 2010 Feb;63(2):365-73. doi: 10.1002/mrm.22206.

引用本文的文献

1
MR thermometry with high precision and temporal resolution by quadratic phase MR fingerprinting.
Magn Reson Med. 2025 Sep;94(3):1119-1135. doi: 10.1002/mrm.30546. Epub 2025 Apr 28.
2
Therapeutic ultrasound transducer technology and monitoring techniques: a review with clinical examples.
Int J Hyperthermia. 2024;41(1):2389288. doi: 10.1080/02656736.2024.2389288. Epub 2024 Aug 12.
3
Spatio-Spectral Ultrasound Characterization of Reflection and Transmission Through Bone With Temperature Dependence.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1727-1737. doi: 10.1109/TUFFC.2022.3163225. Epub 2022 Apr 27.
4
Stereo-crossed ablation guided by stereoelectroencephalography for epilepsy: comprehensive coagulations a network of multi-electrodes.
Ther Adv Neurol Disord. 2020 Jun 9;13:1756286420928657. doi: 10.1177/1756286420928657. eCollection 2020.
6
Reducing temperature errors in transcranial MR-guided focused ultrasound using a reduced-field-of-view sequence.
Magn Reson Med. 2020 Mar;83(3):1016-1024. doi: 10.1002/mrm.27987. Epub 2019 Sep 4.
7
Temperature mapping of exothermic chemistry: imaging of thermoembolization via MR.
Int J Hyperthermia. 2019;36(1):730-738. doi: 10.1080/02656736.2019.1635274.
8
Acoustic radiation force imaging using a single-shot spiral readout.
Phys Med Biol. 2019 Jun 10;64(12):125004. doi: 10.1088/1361-6560/ab1e21.
9
Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations.
Prog Nucl Magn Reson Spectrosc. 2019 Feb;110:34-61. doi: 10.1016/j.pnmrs.2019.01.003. Epub 2019 Jan 31.
10
Cranial MR-guided Focused Ultrasound for Essential Tremor : Technical Considerations and Image Guidance.
Clin Neuroradiol. 2019 Jun;29(2):351-357. doi: 10.1007/s00062-018-0709-x. Epub 2018 Jul 25.

本文引用的文献

2
Future potential of MRI-guided focused ultrasound brain surgery.
Neuroimaging Clin N Am. 2010 Aug;20(3):355-66. doi: 10.1016/j.nic.2010.05.003.
3
Reweighted ℓ1 referenceless PRF shift thermometry.
Magn Reson Med. 2010 Oct;64(4):1068-77. doi: 10.1002/mrm.22502.
4
Accuracy of real-time MR temperature mapping in the brain: a comparison of fast sequences.
Phys Med. 2010 Oct;26(4):192-201. doi: 10.1016/j.ejmp.2009.11.006. Epub 2010 Jan 21.
5
Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients.
Neurosurgery. 2010 Feb;66(2):323-32; discussion 332. doi: 10.1227/01.NEU.0000360379.95800.2F.
6
High-intensity focused ultrasound for noninvasive functional neurosurgery.
Ann Neurol. 2009 Dec;66(6):858-61. doi: 10.1002/ana.21801.
8
MR thermometry.
J Magn Reson Imaging. 2008 Feb;27(2):376-90. doi: 10.1002/jmri.21265.
10
Correction of proton resonance frequency shift temperature maps for magnetic field disturbances caused by breathing.
Phys Med Biol. 2006 Sep 21;51(18):4689-705. doi: 10.1088/0031-9155/51/18/015. Epub 2006 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验