College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
Sci Total Environ. 2019 Dec 20;697:134101. doi: 10.1016/j.scitotenv.2019.134101. Epub 2019 Aug 28.
A two-sludge system consisting of A/O (Anaerobic Anoxic Oxic) and NMBBR (Nitrification Moving Bed Biofilm Reactor) was developed. Stable and efficient denitrifying phosphorus removal can be realized by high-efficiency utilization of carbon sources in A/O reactor with the electron acceptors of NO-N in a three-stage NMBBR (consisting of N, N, N). The three-stage NMBBR was successfully started within 18 days without additional inoculation sludge. Then a long-term operation (22-120 d) for the optimization of nitrifying performance, microbial community, and kinetic parameters was investigated. The biofilm characteristics (MLSS and biofilm thickness) and real-time control parameters (DO and pH) initially revealed the differences of three stages, while FISH results confirmed the optimizing nitrifying bacteria populations including AOB, Nitrobacteria and Nitrospira (N: 5.94 ± 0.12%; N: 8.26 ± 0.42%; N: 10.06 ± 0.27% on day 50), basically consisting with the qPCR results (N: 4.05%; N: 8.04%; N: 14.14%). The specific ammonium oxidation rate (SAOR: 3.24-10.02 mg/(gMLSS·h)) and temperature coefficient (θ: 1.008-1.011) based on temperature variation (15-35 °C) exhibited a strong resistant ability to low temperature operation. Moreover, half-saturation constants (K, K, K and K) fitted by Monod equation proved that DO diffusion played a significant role than substrate utilization (NH-N and NO-N), but the diffusion resistance was negligible for flocs size smaller than 70 μm. Additionally, the dominant NOB (mainly Nitrospira) due to a higher K and K was more sensitive to mass transfer and diffusion resistance, which was helpful to understand the microbial competition for short-cut nitrification between AOB and NOB. Based on the above mechanism analysis, the MBBR optimization for the design and operation was put forward.
开发了由 A/O(厌氧缺氧好氧)和 NMBBR(硝化移动床生物膜反应器)组成的两段式污泥系统。在 A/O 反应器中,高效利用电子供体 NO-N 中的碳源,可以实现稳定高效的反硝化除磷。在没有额外接种污泥的情况下,三阶段 NMBBR(由 N、N、N 组成)在 18 天内成功启动。然后进行了长期运行(22-120 天),以优化硝化性能、微生物群落和动力学参数。生物膜特性(MLSS 和生物膜厚度)和实时控制参数(DO 和 pH)最初揭示了三个阶段的差异,而 FISH 结果证实了优化的硝化细菌种群,包括 AOB、Nitrobacteria 和 Nitrospira(N:5.94±0.12%;N:8.26±0.42%;N:10.06±0.27%,第 50 天),基本上与 qPCR 结果一致(N:4.05%;N:8.04%;N:14.14%)。基于温度变化(15-35°C)的特定氨氧化速率(SAOR:3.24-10.02mg/(gMLSS·h))和温度系数(θ:1.008-1.011)表现出对低温运行的强抵抗能力。此外,通过 Monod 方程拟合的半饱和常数(K、K、K 和 K)证明,DO 扩散对基质利用(NH-N 和 NO-N)的影响比扩散更显著,但对于小于 70μm 的絮体尺寸,扩散阻力可以忽略不计。此外,由于更高的 K 和 K,占主导地位的 NOB(主要是 Nitrospira)对传质和扩散阻力更敏感,这有助于理解 AOB 和 NOB 之间短程硝化的微生物竞争。基于上述机制分析,提出了 MBBR 的优化设计和运行。