Suppr超能文献

基于黎曼流形的脑网络分析进行癫痫灶定位。

Epileptic Focus Localization via Brain Network Analysis on Riemannian Manifolds.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2019 Oct;27(10):1942-1951. doi: 10.1109/TNSRE.2019.2939010. Epub 2019 Sep 2.

Abstract

OBJECTIVE

Brain network connectivity analysis plays an important role in computer-aided automatic localization of seizure onset zone (SOZ) from Intracranial Electroencephalography (iEEG). However, how to accurately compute brain network dynamics is still not well addressed. This work aims to develop an effective measure to find out the dynamics for SOZ localization.

METHODS

Given multiple-channel iEEG signals, the ictal process involves continuous changes of information propagation. In each time slot, the connectivity relationship between channels can be represented as a matrix. Since the matrices from different time slots do not lie on vector spaces, the similarity between them cannot be computed directly. In this paper, we regard the matrices as points on a Riemannian manifold, so that the similarity can be measured by the geodesic distance on the manifold. It addresses the information-losing problem in existing methods using a vector to approximate a matrix. With the Riemannian method, the brain network dynamics are figured out by clustering methods. A temporal segmentation process is applied to refine the segments for SOZ localization.

RESULTS

Our method is evaluated on six epilepsy patients, and the SOZ localization performance is evaluated by the area under the curve (AUC) score. Overall, our method obtains an average AUC score of 0.875, which outperforms the existing approaches.

CONCLUSION

Our method preserves more information in measuring the relationship between brain connectivity descriptors, thus is more robust for SOZ localization.

SIGNIFICANCE

Our method has great potentials for clinical epilepsy treatments.

摘要

目的

脑网络连通性分析在从颅内脑电图(iEEG)辅助自动定位发作起始区(SOZ)中起着重要作用。然而,如何准确计算脑网络动力学仍然没有得到很好的解决。本工作旨在开发一种有效的方法来找出 SOZ 定位的动力学。

方法

对于多通道 iEEG 信号,发作过程涉及信息传播的连续变化。在每个时间槽中,通道之间的连通关系可以表示为一个矩阵。由于来自不同时间槽的矩阵不在向量空间上,因此它们之间的相似性不能直接计算。在本文中,我们将矩阵视为黎曼流形上的点,因此相似性可以通过流形上的测地线距离来衡量。它解决了现有方法中使用向量来近似矩阵的信息丢失问题。通过黎曼方法,通过聚类方法来确定脑网络动力学。应用时间分割过程来细化用于 SOZ 定位的片段。

结果

我们的方法在六名癫痫患者中进行了评估,并通过曲线下面积(AUC)评分评估 SOZ 定位性能。总体而言,我们的方法获得了 0.875 的平均 AUC 评分,优于现有方法。

结论

我们的方法在测量脑连接描述符之间的关系时保留了更多的信息,因此对于 SOZ 定位更稳健。

意义

我们的方法在临床癫痫治疗中有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验