Suppr超能文献

用于图像去噪的动态残差密集网络

Dynamic Residual Dense Network for Image Denoising.

作者信息

Song Yuda, Zhu Yunfang, Du Xin

机构信息

Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310027, China.

Computer Science & Information Engineering, Zhejiang Gongshang University, Hangzhou 310027, China.

出版信息

Sensors (Basel). 2019 Sep 3;19(17):3809. doi: 10.3390/s19173809.

Abstract

Deep convolutional neural networks have achieved great performance on various image restoration tasks. Specifically, the residual dense network (RDN) has achieved great results on image noise reduction by cascading multiple residual dense blocks (RDBs) to make full use of the hierarchical feature. However, the RDN only performs well in denoising on a single noise level, and the computational cost of the RDN increases significantly with the increase in the number of RDBs, and this only slightly improves the effect of denoising. To overcome this, we propose the dynamic residual dense network (DRDN), a dynamic network that can selectively skip some RDBs based on the noise amount of the input image. Moreover, the DRDN allows modifying the denoising strength to manually get the best outputs, which can make the network more effective for real-world denoising. Our proposed DRDN can perform better than the RDN and reduces the computational cost by 40 - 50 % . Furthermore, we surpass the state-of-the-art CBDNet by 1.34 dB on the real-world noise benchmark.

摘要

深度卷积神经网络在各种图像恢复任务中取得了优异的性能。具体而言,残差密集网络(RDN)通过级联多个残差密集块(RDB)充分利用层次特征,在图像降噪方面取得了很好的效果。然而,RDN仅在单一噪声水平的去噪中表现良好,并且随着RDB数量的增加,RDN的计算成本显著增加,而这仅略微提高了去噪效果。为了克服这一问题,我们提出了动态残差密集网络(DRDN),这是一种动态网络,它可以根据输入图像的噪声量选择性地跳过一些RDB。此外,DRDN允许修改去噪强度以手动获得最佳输出,这可以使网络在实际去噪中更有效。我们提出的DRDN比RDN表现更好,并且将计算成本降低了40 - 50%。此外,在实际噪声基准测试中,我们比当前最先进的CBDNet高出1.34 dB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aa8/6749329/ac9292667854/sensors-19-03809-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验