Suppr超能文献

Noise2Atom:用于扫描透射电子显微镜图像的无监督去噪方法

Noise2Atom: unsupervised denoising for scanning transmission electron microscopy images.

作者信息

Wang Feng, Henninen Trond R, Keller Debora, Erni Rolf

机构信息

Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstr. 129, Dübendorf, CH-8600, Switzerland.

出版信息

Appl Microsc. 2020 Oct 20;50(1):23. doi: 10.1186/s42649-020-00041-8.

Abstract

We propose an effective deep learning model to denoise scanning transmission electron microscopy (STEM) image series, named Noise2Atom, to map images from a source domain [Formula: see text] to a target domain [Formula: see text], where [Formula: see text] is for our noisy experimental dataset, and [Formula: see text] is for the desired clear atomic images. Noise2Atom uses two external networks to apply additional constraints from the domain knowledge. This model requires no signal prior, no noise model estimation, and no paired training images. The only assumption is that the inputs are acquired with identical experimental configurations. To evaluate the restoration performance of our model, as it is impossible to obtain ground truth for our experimental dataset, we propose consecutive structural similarity (CSS) for image quality assessment, based on the fact that the structures remain much the same as the previous frame(s) within small scan intervals. We demonstrate the superiority of our model by providing evaluation in terms of CSS and visual quality on different experimental datasets.

摘要

我们提出了一种有效的深度学习模型来对扫描透射电子显微镜(STEM)图像序列进行去噪,名为Noise2Atom,用于将源域[公式:见正文]中的图像映射到目标域[公式:见正文],其中[公式:见正文]代表我们的噪声实验数据集,[公式:见正文]代表所需的清晰原子图像。Noise2Atom使用两个外部网络来应用来自领域知识的额外约束。该模型不需要信号先验、噪声模型估计和配对训练图像。唯一的假设是输入是在相同的实验配置下获取的。为了评估我们模型的恢复性能,由于无法获得我们实验数据集的真实情况,我们基于在小扫描间隔内结构与前一帧(多帧)基本相同这一事实,提出了连续结构相似性(CSS)用于图像质量评估。我们通过在不同实验数据集上进行CSS和视觉质量方面的评估来证明我们模型的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验