Suppr超能文献

Crl 通过连接 σ 和 RNA 聚合酶进行转录激活的结构基础。

Structural basis for transcription activation by Crl through tethering of σ and RNA polymerase.

机构信息

Tri-Institutional Training Program in Chemical Biology, The Rockefeller University, New York, NY 10065.

Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065.

出版信息

Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.

Abstract

In bacteria, a primary σ-factor associates with the core RNA polymerase (RNAP) to control most transcription initiation, while alternative σ-factors are used to coordinate expression of additional regulons in response to environmental conditions. Many alternative σ-factors are negatively regulated by anti-σ-factors. In , , and many other γ-proteobacteria, the transcription factor Crl positively regulates the alternative σ-regulon by promoting the association of σ with RNAP without interacting with promoter DNA. The molecular mechanism for Crl activity is unknown. Here, we determined a single-particle cryo-electron microscopy structure of Crl-σ-RNAP in an open promoter complex with a σ-regulon promoter. In addition to previously predicted interactions between Crl and domain 2 of σ (σ), the structure, along with -benzoylphenylalanine cross-linking, reveals that Crl interacts with a structural element of the RNAP β'-subunit that we call the β'-clamp-toe (β'CT). Deletion of the β'CT decreases activation by Crl without affecting basal transcription, highlighting the functional importance of the Crl-β'CT interaction. We conclude that Crl activates σ-dependent transcription in part through stabilizing σ-RNAP by tethering σ and the β'CT. We propose that Crl, and other transcription activators that may use similar mechanisms, be designated σ-activators.

摘要

在细菌中,主要 σ 因子与核心 RNA 聚合酶(RNAP)结合,控制大多数转录起始,而其他 σ 因子则用于协调环境条件下额外调控子的表达。许多其他 σ 因子受到反 σ 因子的负调控。在 、 以及许多其他 γ-变形菌中,转录因子 Crl 通过促进 σ 与 RNAP 的结合来正向调控替代 σ 调控子,而无需与启动子 DNA 相互作用。Crl 活性的分子机制尚不清楚。在这里,我们在具有 σ 调控子启动子的开放启动子复合物中确定了 Crl-σ-RNAP 的单颗粒冷冻电子显微镜结构。除了先前预测的 Crl 与 σ 结构域 2(σ)之间的相互作用外,该结构以及 -苯甲酰基苯丙氨酸交联,揭示了 Crl 与我们称为 β'-夹钳脚趾(β'CT)的 RNAP β'-亚基的结构元件相互作用。β'CT 的缺失会降低 Crl 的激活作用,而不影响基础转录,这突出了 Crl-β'CT 相互作用的功能重要性。我们得出结论,Crl 通过将 σ 和 β'CT 固定在一起来部分稳定 σ-RNAP,从而激活 σ 依赖性转录。我们建议将 Crl 和其他可能使用类似机制的转录激活因子指定为 σ-激活因子。

相似文献

1
Structural basis for transcription activation by Crl through tethering of σ and RNA polymerase.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
3
Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15955-60. doi: 10.1073/pnas.1311642110. Epub 2013 Sep 16.
9
Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with sigma S.
J Bacteriol. 2014 Sep;196(18):3279-88. doi: 10.1128/JB.01910-14. Epub 2014 Jul 7.
10
Regulated communication between the upstream face of RNA polymerase and the beta' subunit jaw domain.
EMBO J. 2004 Oct 27;23(21):4264-74. doi: 10.1038/sj.emboj.7600407. Epub 2004 Oct 7.

引用本文的文献

1
A negative feedback loop is critical for recovery of RpoS after stress in Escherichia coli.
PLoS Genet. 2024 Mar 11;20(3):e1011059. doi: 10.1371/journal.pgen.1011059. eCollection 2024 Mar.
2
RpoS and the bacterial general stress response.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0015122. doi: 10.1128/mmbr.00151-22. Epub 2024 Feb 27.
3
Transcription activation in and .
EcoSal Plus. 2024 Dec 12;12(1):eesp00392020. doi: 10.1128/ecosalplus.esp-0039-2020. Epub 2024 Feb 12.
4
A negative feedback loop is critical for recovery of RpoS after stress in .
bioRxiv. 2023 Nov 10:2023.11.09.566509. doi: 10.1101/2023.11.09.566509.
5
Structure of the transcription open complex of distinct σ factors.
Nat Commun. 2023 Oct 13;14(1):6455. doi: 10.1038/s41467-023-41796-4.
6
An SI3-σ arch stabilizes cyanobacteria transcription initiation complex.
Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2219290120. doi: 10.1073/pnas.2219290120. Epub 2023 Apr 10.
7
The structural mechanism for transcription activation by Caulobacter crescentus GcrA.
Nucleic Acids Res. 2023 Feb 28;51(4):1960-1970. doi: 10.1093/nar/gkad016.
9
Structural basis of transcriptional regulation by a nascent RNA element, HK022 putRNA.
Nat Commun. 2022 Aug 15;13(1):4668. doi: 10.1038/s41467-022-32315-y.
10
Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp.
Mol Microbiol. 2022 Feb;117(2):252-260. doi: 10.1111/mmi.14860. Epub 2021 Dec 25.

本文引用的文献

1
Structural insights into the unique mechanism of transcription activation by Caulobacter crescentus GcrA.
Nucleic Acids Res. 2018 Apr 6;46(6):3245-3256. doi: 10.1093/nar/gky161.
3
Structures of E. coli σS-transcription initiation complexes provide new insights into polymerase mechanism.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4051-6. doi: 10.1073/pnas.1520555113. Epub 2016 Mar 28.
5
Structural, functional, and genetic analyses of the actinobacterial transcription factor RbpA.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7171-6. doi: 10.1073/pnas.1504942112. Epub 2015 May 26.
7
Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with sigma S.
J Bacteriol. 2014 Sep;196(18):3279-88. doi: 10.1128/JB.01910-14. Epub 2014 Jul 7.
8
Bacterial sigma factors: a historical, structural, and genomic perspective.
Annu Rev Microbiol. 2014;68:357-76. doi: 10.1146/annurev-micro-092412-155737. Epub 2014 Jun 18.
10
Structural basis for the redox sensitivity of the Mycobacterium tuberculosis SigK-RskA σ-anti-σ complex.
Acta Crystallogr D Biol Crystallogr. 2014 Apr;70(Pt 4):1026-36. doi: 10.1107/S1399004714000121. Epub 2014 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验