Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
JCI Insight. 2019 Sep 5;4(17):130153. doi: 10.1172/jci.insight.130153.
Broadly neutralizing antibodies (bNAbs) against HIV-1 are under evaluation for both prevention and therapy. HIV-1 sequence diversity observed in most HIV-infected individuals and archived variations in critical bNAb epitopes present a major challenge for the clinical application of bNAbs, as preexistent resistant viral strains can emerge, resulting in bNAb failure to control HIV. In order to identify viral resistance in patients prior to antibody therapy and to guide the selection of effective bNAb combination regimens, we developed what we believe to be a novel Bayesian machine-learning model that uses HIV-1 envelope protein sequences and foremost approximated glycan occupancy information as variables to quantitatively predict the half-maximal inhibitory concentrations (IC50) of 126 neutralizing antibodies against a variety of cross clade viruses. We then applied this model to peripheral blood mononuclear cell-derived proviral Env sequences from 25 HIV-1-infected individuals mapping the landscape of neutralization resistance within each individual's reservoir and determined the predicted ideal bNAb combination to achieve 100% neutralization at IC50 values <1 μg/ml. Furthermore, predicted cellular viral reservoir neutralization signatures of individuals before an analytical antiretroviral treatment interruption were consistent with the measured neutralization susceptibilities of the respective plasma rebound viruses, validating our model as a potentially novel tool to facilitate the advancement of bNAbs into the clinic.
广谱中和抗体(bNAbs)在 HIV-1 的预防和治疗方面都在进行评估。大多数 HIV 感染者体内观察到的 HIV-1 序列多样性和关键 bNAb 表位的存档变异对 bNAb 的临床应用构成了重大挑战,因为先前存在的耐药病毒株可能会出现,导致 bNAb 无法控制 HIV。为了在抗体治疗前识别患者中的病毒耐药性,并指导有效 bNAb 联合方案的选择,我们开发了一种我们认为是新颖的贝叶斯机器学习模型,该模型使用 HIV-1 包膜蛋白序列和最重要的近似聚糖占有率信息作为变量,定量预测 126 种针对各种跨群病毒的中和抗体的半最大抑制浓度 (IC50)。然后,我们将该模型应用于 25 名 HIV-1 感染者的外周血单核细胞衍生前病毒 Env 序列,绘制了每个人体内中和耐药性的景观,并确定了预测的理想 bNAb 组合,以在 IC50 值<1μg/ml 时实现 100%的中和。此外,在分析性抗逆转录病毒治疗中断之前个体的预测细胞病毒库中和特征与各自血浆反弹病毒的测量中和敏感性一致,验证了我们的模型作为一种潜在的新工具,可促进 bNAb 进入临床应用。