Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG (EPSP Team), F-38000, Grenoble, France.
Univ. Grenoble Alpes, (UGA)/UMS GRICAD, F-38000, Grenoble, France.
J Expo Sci Environ Epidemiol. 2020 Jul;30(4):743-755. doi: 10.1038/s41370-019-0166-x. Epub 2019 Sep 4.
This work is part of a global project aiming to use medico-administrative big data from the whole French agricultural population (~3 millions), collected through their mandatory health insurance system (Mutualité Sociale Agricole), to highlight associations between chronic diseases and agricultural activities. At the request of the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), our objective was to estimate which pesticides were probably used by each agricultural worker, in order to include this information in our analyses and search for association with diseases. We selected five databases to achieve this objective: the Graphical Land Parcel Registration (RPG), the French Agricultural Census, "Cultivation Practice" surveys from the Agriculture ministry, the MATPHYTO crop-exposure matrix and the Compilation of Phytosanitary Indexes from the French Public Health Agency. A geographical grid was designed to use geographical location while maintaining worker anonymity, dividing France into square tracts of variable surface each containing a minimum of 1500 agricultural workers. We developed an automated algorithm to predict each individual potential exposure by crossing her/his occupational activity, the geographical grid and the RPG to deduce cultivation practices and use it as a gateway to estimate pesticides use. This approach allowed drawing, from administrative data, a list of substances potentially used by each agricultural worker throughout France. Results of the algorithm are illustrated at collective level (descriptive statistics for the whole population), as well as at individual level (some workers taken as examples). The generalization of this method in other national contexts is discussed. By linking this information with the health insurance databases, this approach could contribute to the agricultural workers health surveillance.
这项工作是一个旨在利用法国农业人口(约 300 万)的医疗管理大数据的全球项目的一部分,这些数据通过他们的强制性健康保险系统(Mutualité Sociale Agricole)收集,以强调慢性病与农业活动之间的关联。应法国食品、环境和职业健康与安全署(ANSES)的要求,我们的目标是估计每个农业工人可能使用了哪些农药,以便在我们的分析中包含这一信息并寻找与疾病的关联。为此,我们选择了五个数据库:图形土地 parcels 登记(RPG)、法国农业普查、农业部的“耕作实践”调查、MATPHYTO 作物暴露矩阵和法国公共卫生署的植物检疫索引汇编。设计了一个地理网格来利用地理位置,同时保持工人的匿名性,将法国划分为可变表面的正方形地块,每个地块至少包含 1500 名农业工人。我们开发了一种自动算法,通过交叉她/他的职业活动、地理网格和 RPG 来预测每个个体的潜在暴露,以推断种植实践,并将其作为估计农药使用的入口。这种方法允许从行政数据中绘制出法国每个农业工人可能使用的潜在物质清单。该算法的结果在集体层面(整个人群的描述性统计)和个体层面(作为示例的一些工人)进行了说明。讨论了在其他国家背景下推广这种方法的问题。通过将此信息与健康保险数据库联系起来,这种方法可以有助于对农业工人的健康监测。