Suppr超能文献

内含子和外显子定义及反式剪接的统一机制。

A unified mechanism for intron and exon definition and back-splicing.

机构信息

Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, USA.

出版信息

Nature. 2019 Sep;573(7774):375-380. doi: 10.1038/s41586-019-1523-6. Epub 2019 Sep 4.

Abstract

The molecular mechanisms of exon definition and back-splicing are fundamental unanswered questions in pre-mRNA splicing. Here we report cryo-electron microscopy structures of the yeast spliceosomal E complex assembled on introns, providing a view of the earliest event in the splicing cycle that commits pre-mRNAs to splicing. The E complex architecture suggests that the same spliceosome can assemble across an exon, and that it either remodels to span an intron for canonical linear splicing (typically on short exons) or catalyses back-splicing to generate circular RNA (on long exons). The model is supported by our experiments, which show that an E complex assembled on the middle exon of yeast EFM5 or HMRA1 can be chased into circular RNA when the exon is sufficiently long. This simple model unifies intron definition, exon definition, and back-splicing through the same spliceosome in all eukaryotes and should inspire experiments in many other systems to understand the mechanism and regulation of these processes.

摘要

外显子定义和反式剪接的分子机制是前体 mRNA 剪接中尚未解决的基本问题。在这里,我们报告了在酵母剪接体 E 复合物组装在内含子上的冷冻电子显微镜结构,提供了剪接循环中最早的事件的视图,该事件使前体 mRNA 进行剪接。E 复合物的结构表明,同一个剪接体可以跨外显子组装,并且它要么重塑以跨越内含子进行典型的线性剪接(通常在短外显子上),要么催化反式剪接以产生环状 RNA(在长外显子上)。该模型得到了我们实验的支持,实验表明,当外显子足够长时,在酵母 EFM5 或 HMRA1 的中间外显子上组装的 E 复合物可以被追踪到环状 RNA。这个简单的模型通过所有真核生物中的同一个剪接体统一了内含子定义、外显子定义和反式剪接,应该会激发许多其他系统中的实验,以了解这些过程的机制和调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e65/6939996/3db7112da48b/nihms-1536398-f0006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验