Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
SpheriTech Ltd, Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK.
J Mater Sci Mater Med. 2019 Sep 4;30(9):102. doi: 10.1007/s10856-019-6303-1.
Dysfunction of the corneal endothelium (CE) resulting from progressive cell loss leads to corneal oedema and significant visual impairment. Current treatments rely upon donor allogeneic tissue to replace the damaged CE. A donor cornea shortage necessitates the development of biomaterials, enabling in vitro expansion of corneal endothelial cells (CECs). This study investigated the use of a synthetic peptide hydrogel using poly-ε-lysine (pεK), cross-linked with octanedioic-acid as a potential substrate for CECs expansion and CE grafts. PεK hydrogel properties were optimised to produce a substrate which was thin, transparent, porous and robust. A human corneal endothelial cell line (HCEC-12) attached and grew on pεK hydrogels as confluent monolayers after 7 days, whereas primary porcine CECs (pCECs) detached from the pεK hydrogel. Pre-adsorption of collagen I, collagen IV and fibronectin to the pεK hydrogel increased pCEC adhesion at 24 h and confluent monolayers formed at 7 days. Minimal cell adhesion was observed with pre-adsorbed laminin, chondroitin sulphate or commercial FNC coating mix (fibronectin, collagen and albumin). Functionalisation of the pεK hydrogel with synthetic cell binding peptide H-Gly-Gly-Arg-Gly-Asp-Gly-Gly-OH (RGD) or α2β1 integrin recognition sequence H-Asp-Gly-Glu-Ala-OH (DGEA) resulted in enhanced pCEC adhesion with the RGD peptide only. pCECs grown in culture at 5 weeks on RGD pεK hydrogels showed zonula occludins 1 staining for tight junctions and expression of sodium-potassium adenosine triphosphase, suggesting a functional CE. These results demonstrate the pεK hydrogel can be tailored through covalent binding of RGD to provide a surface for CEC attachment and growth. Thus, providing a synthetic substrate with a therapeutic application for the expansion of allogenic CECs and replacement of damaged CE.
角膜内皮细胞(CE)功能障碍导致细胞逐渐丧失,进而导致角膜水肿和显著的视力损害。目前的治疗方法依赖于同种异体供体组织来替代受损的 CE。由于供体角膜短缺,需要开发生物材料,以使角膜内皮细胞(CEC)在体外扩增。本研究调查了使用聚-ε-赖氨酸(pεK)合成肽水凝胶,用辛二酸交联,作为 CEC 扩增和 CE 移植物的潜在基质。优化了 pεK 水凝胶的特性,以生产出一种薄、透明、多孔和坚固的基质。人角膜内皮细胞系(HCEC-12)在 pεK 水凝胶上附着并在 7 天后生长为连续的单层,而原代猪 CEC(pCEC)从 pεK 水凝胶上脱落。胶原 I、IV 和纤连蛋白预先吸附到 pεK 水凝胶上可增加 pCEC 在 24 小时时的黏附力,并在 7 天形成连续的单层。预先吸附层粘连蛋白、硫酸软骨素或商业 FNC 涂层混合物(纤连蛋白、胶原蛋白和白蛋白)时,观察到最小的细胞黏附。用合成细胞结合肽 H-Gly-Gly-Arg-Gly-Asp-Gly-Gly-OH(RGD)或 α2β1 整合素识别序列 H-Asp-Gly-Glu-Ala-OH(DGEA)对 pεK 水凝胶进行功能化,结果仅 RGD 肽增强了 pCEC 的黏附。在 RGD pεK 水凝胶上培养 5 周的 pCEC 显示出紧密连接的闭合蛋白 1 染色和钠钾三磷酸腺苷的表达,表明具有功能性 CE。这些结果表明,通过 RGD 的共价结合可以对 pεK 水凝胶进行定制,从而为 CEC 附着和生长提供表面。因此,提供了一种具有治疗同种异体 CEC 扩增和替代受损 CE 应用的合成基质。