Suppr超能文献

基于人工神经网络的含双氯芬酸钠经皮贴剂的处方和药物渗透建模。

Artificial neural network for modeling formulation and drug permeation of topical patches containing diclofenac sodium.

机构信息

Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of Medea, Algeria, Nouveau Pôle Urbain, Medea University, 26000, Medea, Algeria.

Faculty of Sciences, University of Medea, Algeria, Nouveau Pôle Urbain, Medea University, 26000, Medea, Algeria.

出版信息

Drug Deliv Transl Res. 2020 Feb;10(1):168-184. doi: 10.1007/s13346-019-00671-w.

Abstract

In this work, topical matrix patches of diclofenac sodium (DS) were formulated by the solvent casting method using different ratios of chitosan (CTS) and kappa carrageenan (KC). Propylene glycol and tween 80 were used as a plasticizer and permeation enhancer, respectively. The drug matrix film was cast on a polyvinyl alcohol backing membrane. All the patches were evaluated for their physicochemical characteristics (thickness, folding endurance, flatness, drug content, tensile strength, bioadhesion, moisture content, and moisture uptake), along with their in vitro release and in vitro skin permeation studies. Franz diffusion cells were used to conduct the in vitro permeation studies. The artificial neural network (ANN) model was applied to simultaneously predict the DS release and the ex vitro skin permeation kinetics. The formulated patches showed good physicochemical properties. Out of all the studied patches, F6 presented sustained permeation in 32 h and was selected as the best formulation. The ANN model accurately predicted both the kinetic release and the skin permeability of DS from each formulation. This performance was demonstrated by the obtained R = 0.9994 and R = 0.9798 for release and permeation kinetics modeling, respectively, with root mean square error (RMSE) = 3.46 × 10.

摘要

在这项工作中,通过溶剂浇铸法制备了不同比例壳聚糖(CTS)和κ卡拉胶(KC)的双氯芬酸钠(DS)局部基质贴剂。丙二醇和聚山梨醇 80 分别用作增塑剂和渗透增强剂。将药物基质膜浇铸在聚乙烯醇背衬膜上。所有贴剂均进行了理化特性(厚度、耐折性、平整度、药物含量、拉伸强度、生物黏附性、水分含量和水分吸收率)以及体外释放和体外皮肤渗透研究。Franz 扩散池用于进行体外渗透研究。人工神经网络(ANN)模型用于同时预测 DS 的释放和体外皮肤渗透动力学。所制备的贴剂具有良好的理化性质。在所有研究的贴剂中,F6 在 32 小时内表现出持续的渗透,并被选为最佳配方。ANN 模型准确预测了每个配方中 DS 的动力学释放和皮肤渗透性。这一性能通过获得的释放和渗透动力学建模的 R 值分别为 0.9994 和 0.9798,以及均方根误差(RMSE)为 3.46×10-2 得到证明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验