文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

CT 放射组学在预测肝细胞癌早期复发中的应用。

Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma.

机构信息

Department of Radiology, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, Henan, China.

National Digital Switching System Engineering & Technological R&D Center, Zhengzhou, 450002, Henan, China.

出版信息

Abdom Radiol (NY). 2020 Jan;45(1):64-72. doi: 10.1007/s00261-019-02198-7.


DOI:10.1007/s00261-019-02198-7
PMID:31486869
Abstract

PURPOSE: To appraise the ability of the computed tomography (CT) radiomics signature for prediction of early recurrence (ER) in patients with hepatocellular carcinoma (HCC). METHODS: A set of 325 HCC patients were enrolled in this retrospective study and the whole dataset was divided into 2 cohorts, including "training set" (225 patients) and "test set" (100 patients). All patients who underwent partial hepatectomy were followed up at least within 1 year. 656 Radiomics features were extracted from arterial-phase and portal venous-phase CT images. Lasso regression model was used for data dimension reduction, feature selection, and radiomics signature building. Univariate analysis was used to identify clinical and radiomics significant features. Models (radiomics signature, clinical model, and combined model) were evaluated by area under the curve (AUC) of receiver operating characteristic curve. The models' performances for prediction of ER were assessed. RESULTS: The radiomics signature was built by 14 selected radiomics features and was significantly associated with ER (P < 0.001); the AUCs of the "train set" and the "test set" were 0.818 (95% CI 0.760-0.865) and 0.719 (95% CI 0.621-0.805), respectively. The tumor size, tumor capsule, and γ-glutamyl transferase (GGT) were significantly associated with ER in the clinical model (P < 0.05). The combined model showed incremental prognostic value, with the AUCs of "training dataset" and "test dataset" were 0.846 (95% CI 0.792-0.890) and 0.737 (95% CI 0.640-0.820), respectively. The radiomics signature, tumor size, and the level of GGT were independent predictors of ER (P < 0.05). CONCLUSIONS: The CT radiomics signature can be conveniently used to predict the ER in patient with HCC. The combined model performed better for prediction of ER than radiomics signature or clinical model.

摘要

目的:评价 CT 放射组学特征预测肝细胞癌(HCC)患者早期复发(ER)的能力。

方法:本回顾性研究纳入了 325 例 HCC 患者,将全数据集分为 2 个队列,包括“训练集”(225 例患者)和“测试集”(100 例患者)。所有接受部分肝切除术的患者均至少随访 1 年。从动脉期和门静脉期 CT 图像中提取 656 个放射组学特征。使用 Lasso 回归模型进行数据降维、特征选择和放射组学特征构建。单因素分析用于确定临床和放射组学显著特征。通过受试者工作特征曲线下面积(AUC)评估模型(放射组学特征、临床模型和联合模型)。评估模型预测 ER 的性能。

结果:构建了由 14 个选定的放射组学特征组成的放射组学特征,与 ER 显著相关(P<0.001);“训练集”和“测试集”的 AUC 分别为 0.818(95%CI 0.760-0.865)和 0.719(95%CI 0.621-0.805)。在临床模型中,肿瘤大小、肿瘤包膜和γ-谷氨酰转移酶(GGT)与 ER 显著相关(P<0.05)。联合模型显示出增量预测价值,“训练数据集”和“测试数据集”的 AUC 分别为 0.846(95%CI 0.792-0.890)和 0.737(95%CI 0.640-0.820)。放射组学特征、肿瘤大小和 GGT 水平是 ER 的独立预测因素(P<0.05)。

结论:CT 放射组学特征可方便地用于预测 HCC 患者的 ER。联合模型在预测 ER 方面优于放射组学特征或临床模型。

相似文献

[1]
Application of CT radiomics in prediction of early recurrence in hepatocellular carcinoma.

Abdom Radiol (NY). 2020-1

[2]
CT-based radiomics signature: a potential biomarker for preoperative prediction of early recurrence in hepatocellular carcinoma.

Abdom Radiol (NY). 2017-6

[3]
Radiomics analysis enables recurrence prediction for hepatocellular carcinoma after liver transplantation.

Eur J Radiol. 2019-5-10

[4]
CT-based peritumoral radiomics signatures to predict early recurrence in hepatocellular carcinoma after curative tumor resection or ablation.

Cancer Imaging. 2019-2-27

[5]
CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: technical reproducibility of acquisition and scanners.

Radiol Med. 2020-3-21

[6]
Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study.

EBioMedicine. 2019-11-15

[7]
A radiomics-based biomarker for cytokeratin 19 status of hepatocellular carcinoma with gadoxetic acid-enhanced MRI.

Eur Radiol. 2020-1-30

[8]
Computed tomography-based radiomics to predict early recurrence of hepatocellular carcinoma post-hepatectomy in patients background on cirrhosis.

World J Gastroenterol. 2024-4-21

[9]
Prediction early recurrence of hepatocellular carcinoma eligible for curative ablation using a Radiomics nomogram.

Cancer Imaging. 2019-4-26

[10]
Radiomics model based on contrast-enhanced computed tomography imaging for early recurrence monitoring after radical resection of AFP-negative hepatocellular carcinoma.

BMC Cancer. 2024-6-7

引用本文的文献

[1]
Prediction of early postoperative recurrence of hepatocellular carcinoma by habitat analysis based on different sequence of contrast-enhanced CT.

Front Oncol. 2025-1-3

[2]
Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis.

BMC Med Imaging. 2024-10-7

[3]
Enhancing prognostic prediction in hepatocellular carcinoma post-TACE: a machine learning approach integrating radiomics and clinical features.

Front Med (Lausanne). 2024-7-17

[4]
Prediction power of radiomics in early recurrence of hepatocellular carcinoma: A systematic review and meta-analysis.

Medicine (Baltimore). 2024-7-5

[5]
Prognostication of Hepatocellular Carcinoma Using Artificial Intelligence.

Korean J Radiol. 2024-6

[6]
Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies.

Front Oncol. 2024-5-8

[7]
Preoperative prediction for early recurrence of hepatocellular carcinoma using machine learning-based radiomics.

Front Oncol. 2024-3-15

[8]
Postoperative Relapse Prediction in Patients With Ewing Sarcoma Using Computed Tomography-Based Radiomics Models Covering Tumor Per Se and Peritumoral Signatures.

J Comput Assist Tomogr.

[9]
Contrast enhanced ultrasound combined with serology predicts hepatocellular carcinoma recurrence: a retrospective observation cohort study.

Front Oncol. 2023-7-14

[10]
Phase Attention Model for Prediction of Early Recurrence of Hepatocellular Carcinoma With Multi-Phase CT Images and Clinical Data.

Front Radiol. 2022-3-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索