Suppr超能文献

人工智能在预测肝癌一线治疗后复发中的应用:系统评价和荟萃分析。

Artificial intelligence in predicting recurrence after first-line treatment of liver cancer: a systematic review and meta-analysis.

机构信息

Department of Medical Ultrasound, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China.

Second Ward of Nephrology Department, Maoming People's Hospital, Maoming, Guangdong Province, 525011, People's Republic of China.

出版信息

BMC Med Imaging. 2024 Oct 7;24(1):263. doi: 10.1186/s12880-024-01440-z.

Abstract

BACKGROUND

The aim of this study was to conduct a systematic review and meta-analysis to comprehensively evaluate the performance and methodological quality of artificial intelligence (AI) in predicting recurrence after single first-line treatment for liver cancer.

METHODS

A rigorous and systematic evaluation was conducted on the AI studies related to recurrence after single first-line treatment for liver cancer, retrieved from the PubMed, Embase, Web of Science, Cochrane Library, and CNKI databases. The area under the curve (AUC), sensitivity (SENC), and specificity (SPEC) of each study were extracted for meta-analysis.

RESULTS

Six percutaneous ablation (PA) studies, 16 surgical resection (SR) studies, and 5 transarterial chemoembolization (TACE) studies were included in the meta-analysis for predicting recurrence after hepatocellular carcinoma (HCC) treatment, respectively. Four SR studies and 2 PA studies were included in the meta-analysis for recurrence after intrahepatic cholangiocarcinoma (ICC) and colorectal cancer liver metastasis (CRLM) treatment. The pooled SENC, SEPC, and AUC of AI in predicting recurrence after primary HCC treatment via PA, SR, and TACE were 0.78, 0.90, and 0.92; 0.81, 0.77, and 0.86; and 0.73, 0.79, and 0.79, respectively. The values for ICC treated with SR and CRLM treated with PA were 0.85, 0.71, 0.86 and 0.69, 0.63,0.74, respectively.

CONCLUSION

This systematic review and meta-analysis demonstrates the comprehensive application value of AI in predicting recurrence after a single first-line treatment of liver cancer, with satisfactory results, indicating the clinical translation potential of AI in predicting recurrence after liver cancer treatment.

摘要

背景

本研究旨在进行系统评价和荟萃分析,全面评估人工智能(AI)在预测肝癌单一线治疗后复发方面的性能和方法学质量。

方法

从 PubMed、Embase、Web of Science、Cochrane Library 和 CNKI 数据库中检索与肝癌单一线治疗后复发相关的 AI 研究,并进行严格系统评价。提取每个研究的曲线下面积(AUC)、敏感度(SENC)和特异度(SPEC)进行荟萃分析。

结果

共纳入 6 项经皮消融(PA)研究、16 项手术切除(SR)研究和 5 项经动脉化疗栓塞(TACE)研究用于预测肝细胞癌(HCC)治疗后复发的荟萃分析;4 项 SR 研究和 2 项 PA 研究用于预测肝内胆管细胞癌(ICC)和结直肠癌肝转移(CRLM)治疗后复发的荟萃分析。AI 预测 PA、SR 和 TACE 治疗原发性 HCC 后复发的汇总 SENC、SEPC 和 AUC 分别为 0.78、0.90 和 0.92;0.81、0.77 和 0.86;0.73、0.79 和 0.79。SR 治疗的 ICC 和 PA 治疗的 CRLM 的汇总值分别为 0.85、0.71、0.86 和 0.69、0.63、0.74。

结论

本系统评价和荟萃分析表明,AI 在预测肝癌单一线治疗后复发方面具有全面的应用价值,结果令人满意,表明 AI 在预测肝癌治疗后复发方面具有临床转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/370c/11457388/b4c8ada51cd8/12880_2024_1440_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验