Institut für Anorganische Chemie und Analytische Chemie , Johannes Gutenberg-Universität Mainz , Duesbergweg 10-14 , D-55128 Mainz , Germany.
Langmuir. 2019 Sep 24;35(38):12518-12531. doi: 10.1021/acs.langmuir.9b02496. Epub 2019 Sep 12.
Modifying the surfaces of metal oxide nanoparticles (NPs) with monolayers of ligands provides a simple and direct method to generate multifunctional coatings by altering their surface properties. This works best if the composition of the monolayers can be controlled. Mussel-inspired, noninnocent catecholates stand out from other ligands like carboxylates and amines because they are redox-active and allow for highly efficient surface binding and enhanced electron transfer to the surface. However, a comprehensive understanding of their surface chemistry, including surface coverage and displacement of the native ligand, is still lacking. Here, we unravel the displacement of oleate (OA) ligands on hydrophobic, OA-stabilized TiO NPs by catecholate ligands using a combination of one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy techniques. Conclusive pictures of the ligand shells before and after surface modification with catecholate were obtained by H and C NMR spectroscopy (the C chemical shift being more sensitive and with a broader range). The data could be explained using a Langmuir-type approach. Gradual formation of a mixed ligand shell was observed, and the surface processes of catecholate adsorption and OA desorption were quantified. Contrary to the prevailing view, catecholate displaces only a minor fraction (∼20%) of the native OA ligand shell. At the same time, the total ligand density more than doubled from 2.3 nm at native oleate coverage to 4.8 nm at maximum catecholate loading. We conclude that the catecholate ligand adsorbs preferably to unoccupied Ti surface sites rather than replacing native OA ligands. This unexpected behavior, reminiscent of the Vroman effect for protein corona formation, appears to be a fundamental feature in the widely used surface modification of hydrophobic metal oxide NPs with catecholate ligands. Moreover, our findings show that ligand displacement on OA-capped TiO NPs is not suited for a full ligand shell refunctionalization because it produces only mixed ligand shells. Therefore, our results contribute to a better understanding and performance of photocatalytic applications based on catecholate ligand-sensitized TiO NPs.
用配体的单层来修饰金属氧化物纳米粒子 (NPs) 的表面,通过改变其表面性质,提供了一种生成多功能涂层的简单直接的方法。如果可以控制单层的组成,这种方法效果最佳。受贻贝启发的非无辜儿儿茶酚配体与羧酸酯和胺等其他配体不同,因为它们是氧化还原活性的,允许高效的表面结合和增强电子向表面转移。然而,它们的表面化学,包括表面覆盖率和天然配体的取代,仍然缺乏全面的理解。在这里,我们使用一维和二维核磁共振 (NMR) 光谱技术的组合,揭示了儿茶酚配体对疏水性、油酸 (OA) 稳定的 TiO2 NPs 上的油酸 (OA) 配体的取代。通过 H 和 C NMR 光谱(C 化学位移更敏感且范围更广)获得了表面修饰前后配体壳的明确图像。数据可以用 Langmuir 型方法来解释。观察到逐渐形成混合配体壳,并且量化了儿茶酚吸附和 OA 解吸的表面过程。与普遍观点相反,儿茶酚仅取代了一小部分(约 20%)的天然 OA 配体壳。同时,配体密度从天然油酸覆盖率的 2.3 nm 增加到最大儿茶酚负载时的 4.8 nm,增加了一倍多。我们得出的结论是,儿茶酚配体优先吸附在未占据的 Ti 表面位上,而不是取代天然的 OA 配体。这种出乎意料的行为,类似于蛋白质冠形成的 Vroman 效应,似乎是广泛使用儿茶酚配体修饰疏水性金属氧化物 NPs 的基本特征。此外,我们的发现表明,OA 封端的 TiO2 NPs 上的配体取代不适合完全配体壳再功能化,因为它仅产生混合配体壳。因此,我们的结果有助于更好地理解和提高基于儿茶酚配体敏化 TiO2 NPs 的光催化应用的性能。