Department of Chemistry, University of Illinois Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States.
Acc Chem Res. 2023 Jun 20;56(12):1553-1564. doi: 10.1021/acs.accounts.3c00109. Epub 2023 Jun 1.
ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons' signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin-spin T measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles' surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10-30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure-property relationships of AuNPs in biological systems.
金纳米粒子 (AuNPs) 表现出独特的尺寸和形状依赖性特性,这些特性在宏观尺度上是无法获得的。金纳米棒 (AuNRs) 具有形态依赖性光学特性、将光转化为热的能力和高的表面积与体积比,因此在生物传感、医学和催化等领域具有很大的兴趣。虽然金核提供了许多迷人的特性,但本综述重点介绍了 AuNP 软表面涂层,它控制着纳米粒子与局部环境的相互作用。AuNP 表面化学的后修饰可以极大地改变 NP 的胶体稳定性、纳米生物相互作用和功能。聚电解质涂层提供了可控的表面涂层厚度和电荷,这会影响在生物环境中获得的电晕的组成。由于其能够取代原有的涂层,通过硫醇和二硫化物进行的共价修饰通常是用硫醇和二硫化物进行的。由于其能够取代原有的涂层,通过硫醇和二硫化物进行的共价修饰通常是用硫醇和二硫化物进行的。由于其能够取代原有的涂层,通过硫醇和二硫化物进行的共价修饰通常是用硫醇和二硫化物进行的。N-杂环卡宾和环肽扩展了配体层的可能功能。与 AuNPs 结合的表面配体的表征,就配体密度和动力学而言,仍然是一个挑战。核磁共振 (NMR) 光谱是理解分子结构和动力学的有力工具。我们最近关于 AuNPs 的 NMR 工作表明,NMR 数据首次可用于直径达 25nm 的 NPs 上的配体。这得益于三甲基铵头基的强质子 NMR 信号,该信号存在于与其他配体质子信号明显不同的区域。配体密度分析表明,最小的 AuNPs(小于 4nm)具有最大的配体密度,但自旋-自旋 T 测量表明,这些最小的 NPs 也具有最具移动性的配体头基。分子动力学模拟能够调和这些看似矛盾的结果。虽然 NMR 光谱提供了许多 NPs 上的配体信息,但也必须探测单个粒子表面上的配体分布,以充分了解表面涂层。利用扫描透射电子显微镜 (STEM) 中电子能量损失光谱 (EELS) 探测器的改进,利用单层石墨烯衬底对碳 K 边 EELS 信号进行了校准,从而能够以亚纳米空间分辨率对 AuNRs 上的碳原子密度进行定量成像。与他人合作,我们发现与侧面相比,表面活性剂双层涂覆的 AuNR 末端处的表面配体密度降低了 10-30%,这证实了先前间接证据表明配体密度在空间上是不同的。最近的研究发现,纳米粒子表面的配体可以通过控制对活性位点的进入、调整其电子和化学环境,或者阻止进入使纳米粒子表面中毒的杂质,来提高 CO 的电催化还原的选择性和效率。展望未来,虽然 NMR 和 EELS 是研究 AuNPs 表面涂层的强大且互补的技术,但该领域的前沿包括开发以高通量方式探测单个 NPs 表面配体的方法,以监测复杂基质中的纳米生物相互作用,并研究生物系统中 AuNPs 的结构-性能关系。