Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States.
Acc Chem Res. 2023 Jul 4;56(13):1744-1755. doi: 10.1021/acs.accounts.3c00125. Epub 2023 Jun 12.
ConspectusMany desirable and undesirable properties of semiconductor nanocrystals (NCs) can be traced to the NC surface due to the large surface-to-volume ratio. Therefore, precise control of the NC surface is imperative to achieve NCs with the desired qualities. Ligand-specific reactivity and surface heterogeneity make it difficult to accurately control and tune the NC surface. Without a molecular-level appreciation of the NC surface chemistry, modulating the NC surface is impossible and the risk of introducing deleterious surface defects is imminent. To gain a more comprehensive understanding of the surface reactivity, we have utilized a variety of spectroscopic techniques and analytical methods in concert.This Account describes our use of robust characterization techniques and ligand exchange reactions in effort to establish a molecular-level understanding of NC surface reactivity. The utility of NCs in target applications such as catalysis and charge transfer hangs on precise tunability of NC ligands. Modulating the NC surface requires the necessary tools to monitor chemical reactions. One commonly utilized analytical method to achieve targeted surface compositions is H nuclear magnetic resonance (NMR) spectroscopy. Here we describe our use of H NMR spectroscopy to monitor chemical reactions at CdSe and PbS NC surfaces to identify ligand specific reactivity. However, seemingly straightforward ligand exchange reactions can vary widely depending on the NC materials and anchoring group. Some non-native X-type ligands will irreversibly displace native ligands. Other ligands exist in equilibrium with native ligands. Depending on the application, it is important to understand the nature of exchange reactions. This level of understanding can be obtained by extracting exchange ratios, exchange equilibrium, and reaction mechanism information from H NMR spectroscopy to establish precise NC reactivity.Reactivity that occurs through multiple, parallel ligand exchange mechanisms can involve both the liberation of metal-based Z-type ligands in addition to reactivity of X-type ligands. In these reactions, H NMR spectroscopy fails to discern between an X-type oleate or a Z-type Pb(oleate) because only the alkene resonance of the organic constituent is probed by this method. Multiple, parallel reaction pathways occur when thiol ligands are introduced to oleate-capped PbS NCs. This necessitated the use of synergistic characterization methods including H NMR spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, and inductively coupled plasma mass spectrometry (ICP-MS) to characterize both surface-bound and liberated ligands.Similar analytical methods have been employed to probe the NC topology, which is an important, but often overlooked, component to NC reactivity given the facet-specific reactivity of PbS NCs. Through the tandem use of NMR spectroscopy and ICP-MS, we have monitored the liberation of Pb(oleate) as an L-type ligand is titrated to the NC to determine the quantity and equilibrium of Z-type ligands. By studying a variety of NC sizes, we correlated the number of liberated ligands with the size-dependent topology of PbS NCs.Lastly, we incorporate redox-active chemical probes into our toolbox to study NC surface defects. We describe how the site-specific reactivity and relative energetics of redox-active surface-based defects are elucidated using redox probes and show that this reactivity is highly dependent on the surface composition. This Account is designed to encourage readers to consider the necessary characterization techniques needed establish a molecular-level understanding of NC surfaces in their own work.
概述
由于半导体纳米晶体 (NC) 的表面与体积比很大,因此 NC 的许多理想和不理想的性质都可以追溯到 NC 表面。因此,精确控制 NC 表面对于获得具有所需性质的 NC 至关重要。配体的特异性反应性和表面不均匀性使得难以准确控制和调整 NC 表面。如果没有对 NC 表面化学的分子水平的认识,就不可能调节 NC 表面,并且引入有害表面缺陷的风险迫在眉睫。为了更全面地了解表面反应性,我们协同使用了各种光谱技术和分析方法。
本账户描述了我们使用稳健的表征技术和配体交换反应,努力建立对 NC 表面反应性的分子水平理解。NC 在催化和电荷转移等目标应用中的实用性取决于 NC 配体的精确可调性。调节 NC 表面需要必要的工具来监测化学反应。一种常用于实现目标表面组成的分析方法是 H 核磁共振 (NMR) 光谱。在这里,我们描述了我们使用 H NMR 光谱来监测 CdSe 和 PbS NC 表面的化学反应,以确定配体的特异性反应性。然而,看似简单的配体交换反应可能因 NC 材料和锚固基团而异。一些非天然的 X 型配体将不可逆地取代天然配体。其他配体与天然配体处于平衡状态。根据应用的不同,了解交换反应的性质非常重要。通过从 H NMR 光谱中提取交换比、交换平衡和反应机制信息,可以获得这种理解水平,从而建立精确的 NC 反应性。
通过多个平行的配体交换机制发生的反应性可能涉及到金属基 Z 型配体的释放以及 X 型配体的反应性。在这些反应中,H NMR 光谱无法区分油酸酯型的 X 型配体或 Pb(油酸酯)型的 Z 型配体,因为这种方法只能探测有机成分的烯烃共振。当巯基配体被引入油酸封端的 PbS NC 时,会发生多个平行的反应途径。这就需要使用协同的表征方法,包括 H NMR 光谱、傅里叶变换红外 (FTIR) 光谱和电感耦合等离子体质谱 (ICP-MS),以表征表面结合和释放的配体。
类似的分析方法也被用于探测 NC 的拓扑结构,这是 NC 反应性的一个重要但经常被忽视的组成部分,因为 PbS NC 具有各面特异性的反应性。通过使用 NMR 光谱和 ICP-MS 的串联,我们监测了 L 型配体滴定到 NC 时 Pb(油酸酯)的释放,以确定 Z 型配体的数量和平衡。通过研究各种 NC 尺寸,我们将释放的配体数量与 PbS NC 的尺寸依赖性拓扑结构相关联。
最后,我们将氧化还原活性化学探针纳入我们的工具包,以研究 NC 表面缺陷。我们描述了如何使用氧化还原探针阐明氧化还原活性表面基缺陷的位点特异性反应性和相对能级,并表明这种反应性高度依赖于表面组成。本账户旨在鼓励读者考虑在自己的工作中建立对 NC 表面的分子水平理解所需的必要表征技术。