Suppr超能文献

使用多尺度方法在肺癌群体分析中检测局部DNA拷贝数变化

Detection of Local DNA Copy Number Changes in Lung Cancer Population Analyses Using A Multi-Scale Approach.

作者信息

Kachouie Nezamoddin N, Lin Xihong, Christiani David C, Schwartzman Armin

机构信息

Department of Mathematical Sciences, Florida Institute of Technology.

Department of Statistics, Harvard School of Public Health.

出版信息

Commun Stat Case Stud Data Anal Appl. 2015;1(4):206-216. doi: 10.1080/23737484.2016.1197079. Epub 2016 Jul 18.

Abstract

Emerging advances in genomic sequencing have prompted the development of new computational methods for studying the genomic sources of human diseases. This paper presents a recent statistical approach for detection of local regions with significant copy number alterations (CNAs) in lung cancer population. Mapping such regions is of interest as they are potentially associated with lung cancer. Conventional application of multiple testing methods corresponds to testing for CNAs at each probe separately and thresholding the t-statistics as test statistics. Due to the large number of probes, this approach often fails to detect CNA regions. In contrast, the proposed method uses the heights of located peaks and improves the detection power. This is achieved by taking advantage of the spatial structure in the data as well as reducing the number of tests in the multiple comparisons problem. In copy number analysis, it is common to apply segmentation or change detection tools to each individual genomic sample. However, since segmentation results vary among subjects, it becomes difficult to find the common genomic regions in population analyses. Our approach solves this problem by performing the analysis using summary statistics to study at population level directly. Hence, the region detection is performed on the summary t-statistic map. The proposed method is applied to lung cancer data and shows promise for detection of local regions with significant CNAs.

摘要

基因组测序领域的新进展推动了用于研究人类疾病基因组来源的新计算方法的发展。本文介绍了一种用于检测肺癌人群中具有显著拷贝数改变(CNA)的局部区域的最新统计方法。绘制这些区域很有意义,因为它们可能与肺癌有关。多重检验方法的传统应用对应于分别在每个探针处检测CNA,并将t统计量作为检验统计量进行阈值处理。由于探针数量众多,这种方法往往无法检测到CNA区域。相比之下,所提出的方法利用定位峰的高度,提高了检测能力。这是通过利用数据中的空间结构以及减少多重比较问题中的检验次数来实现的。在拷贝数分析中,通常对每个个体基因组样本应用分割或变化检测工具。然而,由于分割结果在个体之间存在差异,在群体分析中很难找到共同的基因组区域。我们的方法通过使用汇总统计量直接在群体水平上进行分析来解决这个问题。因此,区域检测是在汇总t统计量图上进行的。所提出的方法应用于肺癌数据,并显示出检测具有显著CNA的局部区域的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8dc2/6727850/ee28a57d0107/nihms-1048187-f0001.jpg

相似文献

本文引用的文献

1
FDR control of detected regions by multiscale matched filtering.通过多尺度匹配滤波对检测区域进行误报率控制。
Commun Stat Simul Comput. 2017;46(1):127-144. doi: 10.1080/03610918.2014.957842. Epub 2014 Dec 23.
3
Cigarette smoking increases copy number alterations in nonsmall-cell lung cancer.吸烟会增加非小细胞肺癌中的拷贝数改变。
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16345-50. doi: 10.1073/pnas.1102769108. Epub 2011 Sep 12.
8
Efficient change point detection for genomic sequences of continuous measurements.高效的连续测量基因组序列的突变点检测。
Bioinformatics. 2011 Jan 15;27(2):161-6. doi: 10.1093/bioinformatics/btq647. Epub 2010 Nov 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验