Suppr超能文献

利用同步辐射 X 射线微断层扫描、射线照相和衍射技术在 GSECARS 快速鉴定钻石中的矿物包裹体。

Fast identification of mineral inclusions in diamond at GSECARS using synchrotron X-ray microtomography, radiography and diffraction.

机构信息

Department of Earth and Planetary Sciences, Northwestern University, Technological Institute, 2145 Sheridan Road, Evanston, IL 60208, USA.

Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA.

出版信息

J Synchrotron Radiat. 2019 Sep 1;26(Pt 5):1763-1768. doi: 10.1107/S1600577519006854. Epub 2019 Jul 19.

Abstract

Mineral inclusions in natural diamond are widely studied for the insight that they provide into the geochemistry and dynamics of the Earth's interior. A major challenge in achieving thorough yet high rates of analysis of mineral inclusions in diamond derives from the micrometre-scale of most inclusions, often requiring synchrotron radiation sources for diffraction. Centering microinclusions for diffraction with a highly focused synchrotron beam cannot be achieved optically because of the very high index of refraction of diamond. A fast, high-throughput method for identification of micromineral inclusions in diamond has been developed at the GeoSoilEnviro Center for Advanced Radiation Sources (GSECARS), Advanced Photon Source, Argonne National Laboratory, USA. Diamonds and their inclusions are imaged using synchrotron 3D computed X-ray microtomography on beamline 13-BM-D of GSECARS. The location of every inclusion is then pinpointed onto the coordinate system of the six-circle goniometer of the single-crystal diffractometer on beamline 13-BM-C. Because the bending magnet branch 13-BM is divided and delivered into 13-BM-C and 13-BM-D stations simultaneously, numerous diamonds can be examined during coordinated runs. The fast, high-throughput capability of the methodology is demonstrated by collecting 3D diffraction data on 53 diamond inclusions from Juína, Brazil, within a total of about 72 h of beam time.

摘要

天然金刚石中的矿物包裹体广泛用于深入研究地球内部的地球化学和动力学。然而,要对金刚石中的矿物包裹体进行全面而高效的分析,主要面临的挑战在于大多数包裹体的尺寸都在微米级,通常需要同步辐射源进行衍射。由于金刚石的高折射率,使用高度聚焦的同步辐射束对包裹体进行衍射的中心定位无法通过光学方法实现。美国阿贡国家实验室先进光子源地质、土壤和环境先进辐射源中心(GSECARS)开发了一种快速、高通量的金刚石中微矿物包裹体鉴定方法。在 GSECARS 的 13-BM-D 光束线上,使用同步辐射三维计算机 X 射线微断层摄影术对金刚石及其包裹体进行成像。然后,将每个包裹体的位置精确地标定到单晶衍射仪的六圆测角仪的坐标系上。由于弯曲磁体分支 13-BM 被分割并同时输送到 13-BM-C 和 13-BM-D 站,因此可以在协调运行期间同时检查多个金刚石。该方法的快速、高通量能力在巴西茹伊纳的 53 个金刚石包裹体的 3D 衍射数据收集实验中得到了证明,总用时约 72 小时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4f8/6730627/1e81dbcce2ae/s-26-01763-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验