Glazer A M, Collins S P, Zekria D, Liu J, Golshan M
Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
J Synchrotron Radiat. 2004 Mar 1;11(Pt 2):187-9. doi: 10.1107/S0909049504000949. Epub 2004 Feb 12.
In 1947 Kathleen Lonsdale conducted a series of experiments on X-ray diffraction using a divergent beam external to a crystal sample. Unlike the Kossel technique, where divergent X-rays are excited by the presence of fluorescing atoms within the crystal, the use of an external divergent source made it possible to study non-fluorescing crystals. The resulting photographs not only illustrated the complexity of X-ray diffraction from crystals in a truly beautiful way, but also demonstrated unprecedented experimental precision. This long-forgotten work is repeated here using a synchrotron radiation source and, once again, considerable merit is found in Lonsdale's technique. The results of this experiment suggest that, through the use of modern 'third-generation' synchrotron sources, divergent-beam diffraction could soon enjoy a renaissance for high-precision lattice-parameter determination and the study of crystal perfection.
1947年,凯瑟琳·朗斯代尔使用晶体样品外部的发散束对X射线衍射进行了一系列实验。与科塞尔技术不同,在科塞尔技术中,晶体内部的荧光原子会激发发散的X射线,而使用外部发散源使得研究非荧光晶体成为可能。所得的照片不仅以一种真正美妙的方式展示了晶体X射线衍射的复杂性,还展示了前所未有的实验精度。这里使用同步辐射源重复了这项被长期遗忘的工作,并且再次发现朗斯代尔的技术具有相当大的优点。该实验结果表明,通过使用现代的“第三代”同步辐射源,发散束衍射可能很快会在高精度晶格参数测定和晶体完整性研究方面迎来复兴。