James Franck Institute , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States.
Department of Chemistry , University of Chicago , 5801 South Ellis Avenue , Chicago , Illinois 60637 , United States.
Nano Lett. 2019 Oct 9;19(10):6781-6787. doi: 10.1021/acs.nanolett.9b01734. Epub 2019 Sep 17.
Accurate, precise, and rapid particle tracking in three dimensions remains a challenge; yet, its achievement will significantly enhance our understanding of living systems. We developed a multifocal microscopy (MFM) that allows snapshot acquisition of the imaging data, and an associated image processing approach, that together allow simultaneous 3D tracking of many fluorescent particles with nanoscale resolution. The 3D tracking was validated by measuring a known trajectory of a fluorescent bead with an axial accuracy of 19 nm through an image depth (axial range) of 3 μm and 4 nm precision of axial localization through an image depth of 4 μm. A second test obtained a uniform axial probability distribution and Brownian dynamics of beads diffusing in solution. We also validated the MFM approach by imaging fluorescent beads immobilized in gels and comparing the 3D localizations to their "ground truth" positions obtained from a confocal microscopy -stack of finely spaced images. Finally, we applied our MFM and image processing approach to obtain 3D trajectories of insulin granules in pseudoislets of MIN6 cells to demonstrate its compatibility with complex biological systems. Our study demonstrates that multifocal microscopy allows rapid (video rate) and simultaneous 3D tracking of many "particles" with nanoscale accuracy and precision in a wide range of systems, including over spatial scales relevant to whole live cells.
准确、精确和快速的三维粒子跟踪仍然是一个挑战;然而,实现这一目标将显著提高我们对生命系统的理解。我们开发了一种多焦点显微镜(MFM),可以快速获取成像数据,并开发了一种相关的图像处理方法,这两种方法共同实现了同时对许多具有纳米级分辨率的荧光粒子进行三维跟踪。通过对一个荧光珠的已知轨迹进行测量,验证了三维跟踪的准确性,该荧光珠的轴向精度为 19nm,通过 3μm 的图像深度(轴向范围),轴向定位精度为 4nm,通过 4μm 的图像深度。第二个测试获得了一个均匀的轴向概率分布和在溶液中扩散的珠子的布朗动力学。我们还通过对固定在凝胶中的荧光珠进行成像,并将其三维定位与从共聚焦显微镜堆叠的精细间隔图像中获得的“真实”位置进行比较,验证了 MFM 方法的有效性。最后,我们应用我们的 MFM 和图像处理方法来获得 MIN6 细胞伪胰岛中胰岛素颗粒的三维轨迹,以证明其与复杂生物系统的兼容性。我们的研究表明,多焦点显微镜允许在包括整个活细胞相关空间尺度在内的广泛系统中快速(视频速率)和同时对许多“粒子”进行三维跟踪,具有纳米级的准确性和精度。